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Abstract 

As volatility plays very important role in financial risk management, we investigate the volatility dynamics of 
EUR/GBP currency. While a number of studies examines volatility using statistical models, we also use neural 
network approach. We suggest the ARCH-RBF model that combines information from ARCH with RBF neural 
network for volatility forecasting. We also use a large number of statistical models as well as different optimization 
techniques for RBF network such as genetic algorithms or clustering. Both insample and out-of-sample forecasts 
are evaluated using appropriate evaluation measures. In the final comparison none of the considered models 
performed significantly better than the rest with respect to the considered criteria. Finally, we propose upgrades of 
our suggested model for the future. 
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1. Introduction 

The recent global financial crisis has highlighted the 
need for financial institutions to find and implement 
appropriate models for risk quantification. Therefore, 
volatility estimates were subject to research in this 
domain.  

There are more reasons why to forecast volatility – 
volatility is extremely important for risk management, 
for asset allocation, and for taking bets on future 
volatility. A large part of risk management is measuring 
the potential future losses of a portfolio of assets 
(volatility modelling provides a simple approach to 
calculating value at risk of a financial position in risk 
management), and in order to measure these potential 
losses, estimates must be made of future volatilities and 

correlations. In asset allocation, the Markowitz 
approach of minimizing risk for a given level of 
expected returns (see Ref. 1) has become a standard 
approach, and of course an estimate of the variance-
covariance matrix is required to measure risk. Perhaps 
the most challenging application of volatility forecasting, 
however, is to use it for developing a volatility trading 
strategy. Option traders often develop their own forecast 
of volatility, and based on this forecast they compare 
their estimate for the value of an option with the market 
price of that option. The simplest approach to estimating 
volatility is to use historical standard deviation, but 
there is some empirical evidence, which we will discuss 
later, that this can be improved upon. 

Various approaches to volatility modelling have 
been suggested in the econometric and financial 
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literature. In the following we will provide a brief 
overview of developments in the literature starting with 
the autoregressive conditional heteroskedasticity 
(ARCH) models (Ref. 2). Bollerslev (Ref. 3) introduced 
the generalised ARCH (so called GARCH) model. Later, 
as time went on, many extensions of the GARCH model 
have been introduced in the literature since: e.g. 
GARCH-in-mean (GARCH-M) models (Ref. 4), 
EGARCH models (Ref. 5), Threshold ARCH (TARCH) 
and Threshold GARCH (TGARCH) (Ref. 6) and Power 
Arch (PARCH) models (Ref. 7) just to name a few. A 
number of studies have focused on optimal model 
specification and the performance of various GARCH 
models in financial markets providing no clear-cut 
results (such as Ref. 8). 

Also, as computer science has developed, techniques 
of machine learning started to apply in the domain of 
financial forecasting. Gooijer and Hyndman (Ref. 9) 
proved that artificial neural networks had the biggest 
potential in time series forecasting. Therefore, various 
types of neural networks have been used for forecasting 
future values of high frequency financial data such as 
(Ref. 10) or (Ref. 11). 

This study examines various models that can be 
used in forecasting volatility, to evaluate their respective 
performance. One of the main reasons for finding the 
appropriate volatility model is that volatility, as a 
representation of risk, plays an important role in an 
investor’s decision making process. Volatility is not 
only of great concern for investors but also policy 
makers and regulators who are interested in the effect of 
volatility on the stability of financial markets in 
particular and the whole economy in general. Finally, 
volatility estimation is an essential input in many VaR 
(Value at Risk) models, as well as for a number of 
applications in a firms market risk management 
practices. 

This paper concerns with forecasting volatility and it 
is divided into eight chapters. Chapter two deals with 
volatility in risk management and how uncertainty 
impacts the decision-making process. Chapter three 
presents the statistical ARCH/GARCH models used for 
volatility forecasting. In chapter four, data we use for 
our tests are presented. In chapter five we perform the 
GARCH volatility modelling on our tested data and in 
chapter six we present the neural network approach as 

well as our ANN model for volatility forecasting. In 
chapter seven the results are discussed. 

2. Volatility and Uncertainty in Risk 
Management 

As for risk management, the complexity of managerial 
decision-making relates to decision-making with 
incomplete information. Most of the real systems can 
only be described incompletely, i.e. with information 
which cannot be formally expressed by set parameters. 
Uncertain information makes it impossible to exactly 
determine the future behaviour of the system. This type 
of uncertainty is called stochastic and is concerned with 
the category of the probability risk (Ref. 12). 

However, evidence shows that it is possible to 
reduce this type of stochastic uncertainty by a suitable 
choice and use of forecasting models. These models 
based on statistical and soft computing methods or 
artificial intelligence methods are capable of providing 
information in the form of forecasts of quantities with 
an acceptable degree of uncertainty. 

Managers using these forecasts are able to make 
better decisions, i.e. such decisions whose risks in 
achieving targets are minimized. To realize that Cox 
and Hinkley and Weisberg (see Refs. 13 and 14) 
suggested the theory of point estimates and confidence 
intervals. The confidence interval indicates the span of 
possible values into which falls the future estimate of 
the forecasted quantity with the chosen probability 
defined by the manager. This way the limits of the 
possible future values are set. Point or interval estimates 
of the future values of various economic indicators are 
important for the strategic manager's decision-making. 
When determining information entropy in decision-
making, it is useful to focus on how the confidence 
interval for the forecasted economic quantity can be 
made more precise, i.e. narrowed by using the 
forecasting model. This kind of uncertainty is in 
forecasting models based on the standard deviation (also 
called volatility in financial domain) which is widely 
used in measuring risks of forecasts of various (mainly 
economic) time series (see e.g. Refs. 15 and 16). The 
standard deviation as a degree of uncertainty or risk of 
forecasted quantity values estimates is proportional to 
the statistical degree of accuracy of the forecast defined 
as Root Mean Square Error (RMSE). This approach is 
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used with measuring risks of forecasts of many 
economic and financial forecasting models, and is also 
used in managing financial risk (Value at Risk models). 
However, not to be confused, standard deviation (or 
volatility) does not reflect entropy in its true substance 
as uncertainty which is indicated in bits. Uncertainty is 
closely related to how precise are the forecasts 
(estimates of the future values) that managers have at 
their disposal. Important to note, the strong prerequisite 
for the application of such a model in management is 
that apart from the increased reliability of decision-
making, the model output results in uncertainty 
reduction, which makes decision-making easier and less 
weighted with risk. The facilitation of manager's 
decision-making process is not sufficient. 

Resulting from the arguments stated above, accurate 
volatility forecasting is extremely important in risk 
management, mainly in financial domain. 

3. Volatility Forecasting - ARCH and GARCH 
Models 

In this chapter, we are going to look at the statistical 
models which are able to capture and model stochastic 
financial volatility, i.e. to capture the autocorrelation of 
squared returns, the reversion of volatility to the mean, 
as well as the excess kurtosis. 

The major breakthrough in the history of statistical 
modelling came with publishing a study from Box & 
Jenkins (Ref. 17). In this study authors integrated all the 
knowledge including autoregressive and moving 
average models into one book. From that time the 
ARIMA (AutoRegressive Integrated Moving Averages) 
models have been very popular in time series modelling 
for a long time as O'Donovan (Ref. 18) showed that 
these models provided better results than other models 
used in that time. It is therefore no surprise that for more 
than 20 years Box-Jenkins ARMA models have been 
widely used for time series modelling. The models 
published in (Ref. 17) are autoregressive models (AR) 
and moving average (MA) models. Let yt be a stationary 
time series that is a realization of a stochastic process. 
Then, general formula of ARMA(p,q) model can be 
expressed as follows  

∑ ∑
= =

−− −++=
p

i

q

j
jtititit yy

1 1
εθεφξ
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where ξ  is a constant, ,....),( 21 φφ   are autoregressive 

parameters,    ,....),,( 21 −− ttt εεε    are       independent  
random parts. If the model is correct, residuals are to 
form the white noise process. The model is composed of 
two parts –autoregressive (determnistic) part expressing 
the linear dependence on previous values of the 
dependent variable yt; and stochastic part represented by 
moving averages. 

If the series is not stationary, ARIMA models must 
be used. Let yt be a time series and let d be the order of 
differentation; yt will be called ARIMA(p,d,q) process if 
its dth differences produce ARMA(p,q) process. ARIMA 
can be formally defined as 

tt
d ByBB εμ )()1)(( Θ+=−Φ   (2) 

It is also obvious that if d equals zero, ARIMA 
equals just simple ARMA process. The whole process 
of Box-Jenkins statistical modelling, which is 
performed through Box-Jenkins analysis, has more steps 
and it is described in details in (Ref. 3). 

Risk is an important characteristics in currency and 
financial trading. As we already know, the most 
common way in expressing the risk is the volatility. 
Financial volatility, which is present in dynamic 
economic markets like stock market or forex market and 
which plays an important role in financial forecasting as 
well as financial risk analysis, has some very unique 
features. First of all, it is its stochastic character. 
Moreover, financial time series exhibit a characteristic 
known as volatility clustering in which large changes 
tend to follow large changes, and small changes tend to 
follow small changes. Volatility is hence clustered in 
time and therefore it has persistance character. Resulting 
from this, actual variance is dependent on the previous 
variances and the time series is characterized by the 
time-variant conditional variance, also called clustering 
of variances.  

Another feature of financial volatility is mean 
reversion. Volatility is often persistent and so has a long 
memory. In the long term period the volatility oscilates 
around its long-term mean which results in the fact that 
all long-term forecasts are to converge to its long-term 
mean value. So even though financial time series can 
exhibit excessive volatility sometimes, volatility will 
finally settle down to a long run level.  

It has been also experimentally proved that the 
distribution of many high frequency financial time 
series usually have fatter tails than a Gaussian 
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distribution. A phenomenon of fatter tails is also called 
as excess kurtosis. 

The weakness of ARIMA models in modeling 
financial time series is the inability to model stochastic 
non-constant volatility having the features we described 
above. In (Ref. 2) Engle suggested the solution by 
creating so called ARCH (Autoregressive Conditional 
Heteroskedastic) models which assume heteroskedastic 
variance of tε . Let yt be a standard   stationary     AR(p)  
process defined as in (1) and let at be a random part of 
this model and hence, is a white noise process and has a 
constant unconditional variance. Let also assume that 

1|| <iφ  for i = 1, 2, ... p.  
According to Engle (see Ref. 2), the model will 

become more confident and the predictions will be more 
precise if it is dependent on a conditional variance of tε  

t

p

i
itit yy εφ += ∑

=
−

1    
(3) 

where the expected value of tε  is zero tε  and can be  
transformed into the form 

ttt he=ε     (4) 

where tε is the residual part of the model having mean 
value equaled to zero, et is a white noise process ~ 
N(0,1) and ht is a function of conditional 
heteroskedastic variance of random part defined as 
follows 

∑
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According to (Ref. 2), the standard ARCH model of 
p order is defined by equations (4) and (5) and should 
be used for conditional variance modeling. The 
conditional variance in the ARCH(p) model is a 
function of the past squares of random variable et 
(which can be understood as an arrival of new 
information in particular time moments). The ARCH 
model described above is able to model the basic 
properties of financial volatility such as volatility 
clustering, stochastic properties of volatility, mean 
reversion, fat tails etc. 

Bollershev (Ref. 3) suggested the generalized form 
of ARCH model called GARCH (Generalized 
Autoregressive Heteroskedastic Models) where 
conditional variance of ht depends on the previous 
conditonal variances. The general GARCH(p,q) model 
can be formally defined as 

ttt he=ε        (6) 
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where { tε }is a sequence of error parts, {et} is a white 
noise process and ht is a function of conditional variance. 
It is also necessary that jα > 0, j = 1,2,...,q.  
and 0≥iβ for i = 1,2,...,p.  

There exists a number of GARCH extensions, each 
of them are used to model some unusual property of 
volatility. EGARCH created by Nelson (Ref. 5) is an 
implementation of leverage effects. As assymetric 
influence of new information is another feature of 
financial volatility. EGARCH is able to model this 
feature of volatility. The leverage effect implemented in 
EGARCH expresses the asymmetric impact of positive 
and negative changes in financial time series. It means 
that the negative shocks in price influence the volatility 
differently than the positive shocks at the same size. 
This effect appears as a form of negative correlation 
between the changes in prices and the changes in 
volatility. EGARCH models leverage effects in the form 
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       The leverage effect is present as follows: if tε  is 
positive (there is ”good news”), the  total   effect of it−ε   
is iti −+ εγ )1( . However, if it−ε    is  negative (there is  
so called   ”bad news”),   the   total   effect   of   it−ε    is  

||)1( iti −− εγ .   Resulting    from   this,   in   EGARCH 
model bad news usually have larger impact on the 
volatility. (value of would be expected to be negative). 
For details see (Ref. 19). 

The basic GARCH model can be also extended to 
allow for leverage effects. This is performed by treating 
the basic GARCH model as a special case of the power 
GARCH (PGARCH) model proposed by Ding, Granger 
and Engle (see Ref. 7): 
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where d is a positive exponent. 
Before (G)ARCH modeling, one has to find out if 

heteroskedasticity is really present in series. According 
to Engle (Ref. 2), the presence of heteroskedasticity is 
tested by ARCH test which supposes a non-existence of 

Published by Atlantis Press 
Copyright: the authors 

80



 Volatility Forecasting in Risk Management  
 

 

ARCH. This tests uses the Lagrange Multiplier (LM) 
statistics (Ref. 19).  

4. Empirical Data 

As risk analysis plays a very important role at financial 
institutions all over the world we decided to apply our 
models to forex market. Forex is one of the most 
dynamic market in the world and its data are often very 
dynamic, extremely volatile and sometimes chaotic (Ref. 
20). These features seem to be a good base for testing 
our models. This paper focuses on financial time series 
of daily close prices of EUR/GBP exchange rate. 

Fig. 1.  Time Series of daily close prices of EUR/GBP 
currency (October, 2003 – October, 2013). 

The data we used, covered the historical period from 
October 31, 2003 to October 31, 2013 (n = 2610 daily 
observations). *  The graphical characteristics of the 
series is illustrated in Figure 1. Due to validation of our 
models, data were divided into two parts. The first part 
included 1306 observations (from 10/31/2008 to 
10/31/2008) and was  used for training (quantification) 
of our models. The second part of data (11/1/2008 to 
10/31/2013), counting 1304 observations, was used for 
model validation by making one-day-ahead ex-post 
forecast. These observations included new data which 
had not been incorporated into model estimation. We 
used so many data in the validation phase in order to 
guarantee the validation robustness of our models. The 
reason for validation was to find out the real prediction 
power of the models; there was an assumption that if the 

                                                 
*  The data was downloaded from the website http://www.global-
view.com/forex-trading-tools/forex-history. 

model could handle to predict data from ex-post set, it 
would be able to predict values of a currency pair in the 
real future. 

Finally, in order to evaluate the characteristics for 
quantified model as well as to compare the real 
forecasting performance of our proposed models, the 
numerical characteristic for assessing models called 
Mean Squared Error (MSE) was used. 

∑
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where h is the forecasting horizon, H is the total number 
of predictions for the horizon h over the forecast period,  
∧
Y is the estimated value and Y is the original value of 
the series. 

5. Empirical Statistical Analysis and ARCH 
Modelling 

The empirical statistical analysis, which was performed 
according to Box-Jenkins (Ref. 17), focused on the 
original and differentiated series of daily observations 
of EUR/GBP currency pair covering a historical period 
from October 31, 2003 to October 31, 2008. Figure 2 
and Figure 3 illustrates the original series as well as 
differences of the training set respectively. As stated in 
the previous section, we only used observations from 
training set for statistical modeling. Statistical 
modelling was performed in the Eviews software.  

Fig. 2.  EUR/GBP – training set (original series). 
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Fig. 3.  Differences of EUR/GBP series – training set. 

Unit root tests results (see Refs. 21, 22, 23, 24) 
presented in the Table 4 (Appendix A) showed that this 
series was not stationary. In order to stationarize the 
series, it was differentiated. As seen from the Table 4, 
unit root tests confirmed that the differentiated series 
became stationary which had been a necessary condition 
in Box-Jenkins modelling. 

By analyzing autocorrelation (ACF) and partial 
autocorrelation functions (PACF) of the differentiated 
series of EUR/GBP (see Table 5, Appendix A), there 
were no significant correlation coefficients (on alpha = 
0.05). Due to that we supposed that first differences of 
the original series formed a white noise process. In that 
case, the original series would have formed random 
walk process (RWP) as RWP is I(1) process. Assuming 
the differences of the original series formed a white 
noise process, we selected AR(0) as the basic Box-
Jenkins model. Ljung-Box Q-statistics (see Table 5, 
right side) confirmed this assumption and the 
applicability of AR(0) process as the correlations were 
statistically not significant.  

However, the assumption of normality of residuals 
of AR(0) was rejected at 0.05 significance level  (see 
Table 5, Appendix A). The observed assymetry might 
have indicated the presence of nonlinearities in the 
evolution process of residuals. This nonlinearity was 
also confirmed by graphical quantiles comparison (see 
Figure 4) and a scatter plot of the series which did not 
appear to be in the form of a regular ellipsoid (see 
Figure 5). In addition, BDS test rejected the random 

walk hypothesis (see Table 7 Appendix A) as the BDS 
statistic was greater than the  critical value at 0.05 level.  

Fig. 4.  Quantiles of EUR/GBP residuals vs Fig. 6 Scatter plot 
of EUR/GBP residuals the Normal distribution quantiles. 

Fig. 5.  Scatter plot of EUR/GBP residuals variations. 

Therefore, other tests had to be performed in order to 
correctly model this series. 

We noted that the residuals of AR(0) (see Figure 6) 
were not characterized by a Gaussian distribution (see 
Table 6, Appendix A). The assymetry might have 
indicated non-linearities in the residuals. When looking 
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at the graph of residuals (see Figure 6), one could 
observe the variability of these residuals could have 
been caused by the non-constant variance. Residual with 
small value followed another residuals with a small 
value. On the other hand, residual with a large value 
usually followed a residual with another large value. 
However, this is not typical for a white noise process. 
Therefore, this assumption lead us to think about 
stochastic model for volatility.  

Fig. 6.  Evolution of residuals of AR(0) model. 

The suitability for using stochastic volatility model 
was also accepted by performed heteroskedasticity test. 
ARCH test (see Table 6, Appendix A) confirmed the 
series was heteroskedastic since the null hypothesis of 
homoskedasticity had been rejected at 5% and so the 
residuals were characterized by the presence of ARCH 
effect which was quite a frequent phenomenon at 
financial time series. Therefore, we applied a stochastic 
volatility model into the basic model. According to 
correlogram of squared residuals of EUR/GBP 
differences (see Table 8, Appendix A) we quantified 
ARCH(4) model for volatility. 

After quantification of ARCH(4) model, the 
residuals were characterized by the absence of 
conditional heteroskedasticity: the ARCH-LM statistics 
were strictly less than the critical value at 5%. In 
addition, the standardized residuals tested with Ljung-
Box Q-test (see Table 9, Appendix A) confirmed there 
were no significant coefficients in residuals of this 
model. Finally, the final ARCH(4) volatility model is 
defined as follows 

2
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Table 10 in Appendix A states the numerical 
characteristics of ARCH(4) model as well as Student’s 
t-statistics for its parameters.  

6. Neural Network Approach in Volatility 
Forecasting 

In the recent years, other techniques started to apply in 
the domain of time series forecasting. One of the reason 
was the study by Bollershev (Ref. 3), where he proved 
the existence of nonlinearity in financial data. Non-
linearity modelling was one of the drawbacks of Box-
Jenkins models. Today, according to studies such as that 
by Gooijer (Ref. 9), artificial neural networks (ANN) 
are the machine learning models having the biggest 
potential in forecasting financial time series. This is due 
to the fact that these models are extremely helpful in 
modelling non-linear processes which have a priori 
unknown functional relations or this system of relations 
is very complex to describe mathematically (see Ref. 
25). 

ANN is based on human neural system and is an 
universal functional black-box approximator of non-
linear type (Ref. 26, 27 and 28). The reason for 
attractiveness of ANNs for financial prediction can be 
found in the work of Hill et al. (Ref. 29). Here, the 
authors showed that the ANNs worked best in 
connection with highfrequency financial data. The 
competitive performance of ANN is also documented 
on a large number of time series (see Refs. 30 and 31). 
In this part we show a new approach of estimation of 
forecasting function for conditional volatility modelled 
by feedforward neural network of RBF type combined 
with genetic algorithms as well as statistical ARCH 
models.  

A fully connected feed forward neural network was 
selected to be used as the forecasting function, due to its 
conceptual simplicity, and computational efficiency 
(Ref. 32). Our implemented neural network consisted of 
three layers, except for the input and output, there was 
also one hidden layer. We proposed the architecture of 
the neural network (see Figure 7) with only one hidden 
layer due to the fact that according to Cybenko theorem 
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(Ref. 33) the network with one hidden layer is able to 
approximate any continuous function. This hidden layer 
made a previous nonlinear transformation of the data so 
as to facilitate resolution of the problem in hand such as 
regression, classification, etc. The neural network used 
for this research was the network of RBF type (Ref. 34). 
This network is one of the most frequently used 
networks for regression (Ref. 32). RBF, as well as 
multilayer perceptron (MLP, which is a predecessor of 
RBF) have been widely used to capture a variety of 
nonlinear patterns (see Ref. 35) thank to their universal 
approximation properties (see Ref. 36); in other words, 
thanks to their capacity to approximate any continuous 
function provided that they have a sufficient number of 
hidden units (neurons). 

Fig. 7.  The architecture of used RBF neural network. 

The structure of our RBF neural network is defined 
by its architecture (processing units and their 
interconnections, activation functions, methods of 
learning and so on). In Figure 7 each circle or node 
represents the neuron. The neural network consisted of 
an input layer with input vector x  and an output layer 
with the output value tŷ .  

The layer between the input and output layers is 
normally referred to as the hidden layer and its neurons 
as RBF neurons. Here, the input layer is not treated as 
a layer of neural processing units. One important feature 
of RBF networks is the way how output signals are 

calculated in computational neurons. The output signals 
of the hidden layer are  

)(2 jjo wx −=ψ     (12) 

where x  is a k-dimensional neural input vector, jw  

represents the hidden layer weights, 2ψ  are radial basis 
(Gaussian) activation functions. Note that for an RBF 
network, the hidden layer weights jw  represent the 

centres jc  of activation functions in the hidden layer.  

The second parameter of the radial basis function, the 
standard deviation, is estimated as K, (K ≥ 1) multiple 
of the mean value of quadratic distance among the input 
vectors and their cluster centres. The value of K is 
regarded as the rate of overlapping in the distribution of 
input data (see Ref. 37).  

The output layer neuron is linear and has a scalar 
output given by 

 ŷ  = ∑
=

s

j
jjov

1
 (13) 

where jv  are the trainable weights connecting the 
component of the output vector o . Then, the output of 
the hidden layer neurons are the radial basic functions 
of the proximity of weights and input values. A serious 
problem is how to determine the number of hidden layer 
(RBF) neurons. The most used selection method is to 
preprocess training (input) data by some clustering 
algorithm. After choosing the cluster centres, the shape 
parameters jσ  must be determined. These parameters 
express an overlapping measure of basis functions. For 
Gaussians, the standard deviations jσ  can be selected, 

i.e. jσ ~ scΔ , where scΔ denotes the average distance 
among the centres. 

Finally, the RBF network computed the output data 
set as 

tŷ  = ),,( vcx tG  = ∑
=

s

j
jttjv

1
2, ),( cxψ  = ∑

=

s

j
tjjov

1
,  

          t = 1, 2, ..., N     (14) 

where N is the size of data samples, s denotes the 
number of the hidden layer neurons. The hidden layer 
neurons received the Euclidian distances )( jcx −  
and computed the scalar values tjo ,  of    the      
Gaussian function ),(2 jt cxψ  that form the hidden  
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layer output vector to . Finally, the single linear output   
layer neuron computed the weighted sum of the 
Gaussian functions that formed the output value of tŷ .  

In order to optimize the outputs of the network and 
to maximise the accuracy of the forecasts, we had to 
optimize parameters of ANN. The most popular method 
for learning (i.e. adapting parameters) in multilayer 
networks is called back-propagation invented by Bryson 
and Ho (Ref. 38). 

However, there are some drawbacks to back-
propagation. One of them is the convergence of this 
algorithm - it generally converges to any local minimum 
on the error surface, since stochastic gradient descent 
exists on a surface which is not flat. Due to this reason, 
we also used the combination of back-propagation with 
the standard unsupervised technique called K-means 
(see Ref. 39). K-means algorithm, which belongs to a 
group of unsupervised learning methods, is a 
nonhierarchical exclusive clustering method based on 
the relocation principle. The most common type of 
characteristic function is location clustering. The K-
means was used in the phase of non-random 
initialization of weight vector w performed before they 
were adapted by back-propagation. i.e. before the phase 
of network learning. We assumed that in many cases it 
was not necessary to interpolize the output value by 
radial functions, it was quite sufficient to use one 
function for a set of data (cluster), whose center was 
considered to be a center of activation function of a 
neuron. We also supposed that after K-means performed, 
weights should have been located near the global 
minimum of the error function and lower number of 
epochs were supposed to be used for network training. 

The values of centroids were used as an 
initialization values of weight vector w. To find the 
weights jw  or centres of activation functions  we  used  
the following adaptive (learning) version of K-means 
clustering algorithm for s clusters: 

Step 1. Randomly initialise the centres of RBF neurons  
)(t

jc
, j = 1, 2, …, s  (15) 

where s represents the number of chosen RBF 
neurons (clusters). 

Step 2. Apply the new training vector  
)(tx  = ).,...,,( 21 kxxx   (16) 

Step 3. Find the nearest centre to )(tx  and replace its 
position as follows 

)1( +t
jc  = )(t

jc  + λ(t) ( )(tx - )(t
jc ) (17) 

where λ(t) is the learning coefficient and is selected 
as linearly decreasing function of t by λ(t) = λ0(t) (1 - 
t/N) where λ0(t) is the initial value, t is the present 
learning cycle and N is number of learning cycles. 

Step 4. After chosen epochs number, terminate learning. 
Otherwise go to step 2 
 

The above learning method based on the clustering 
algorithm is regarded as one of the granular method 
presenting the bottom-up granulation (see Ref. 40). 
Input vectors are combined into larger overlaping 
granules (clusters) described by cluster´s centres and the 
standard deviations. 

Since back-propagation also features some other 
problems such as “scaling problem" we decided to 
implement genetic algorithm as an learning technique 
for our RBF neural network too. Therefore, in our 
implementation of ANN, back-propagation was altered 
by the genetic algorithm (GA) as an alternative learning 
technique in the process of weights adaptation. Adopted 
from biological systems, genetic algorithms, which are 
algorithms for optimization and machine learning, are 
stochastic search techniques that guide a population of 
solutions towards an optimum using the principles of 
evolution and natural genetics (Ref. 41). They are based 
loosely on several features of biological evolution (Ref. 
42), have become a popular optimization tool in various 
areas. They require five components to be met (Ref. 43): 

1. A way of encoding solutions to the problem on  
chromosomes. In the original genetic algorithm an 
individual chromosome is represented by a binary string. 
The bits of each string are called genes and their varying 
values alleles. A group of individual chromosomes is 
called a population.  

2. An evaluation function which returns a rating  
for each chromosome given to it.  

3. A way of initializing the population of  
chromosomes.  

4. Operators that may be applied to parents when  
they reproduce to alter their genetic composition. 
Standard operators are mutation and crossover (i.e. 
recombination of genetic material).  

5. Parameter settings for the algorithm, the  
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operators, and so forth. 
 
Genetic algorithms are characterized by basic 

genetic operators which include reproduction, crossover 
and mutation (Ref. 44). Given these genetic operatos 
and five components stated above, a genetic algorithm 
operates according to the following steps (Ref. 45): 

1. Initialize the population using the initialization 
procedure, and evaluate each member of the initial 
population.  

2. Reproduce until a stopping criterion is met. 
Reproduction consists of iterations of the following 
steps:  

a) Choose one or more parents to reproduce. 
Selection is stochastic, but the individuals with 
the hightest evaluations are usually favored in the 
selection.  

b) Choose a genetic operator and apply it to the 
parents.  

c) Evaluate the children and accumulate them into a 
generation. After accumulating enough 
individuals, insert them into the population, 
replacing the worst current members of the 
population. 

 
When the components of the genetic algorithm are 

chosen appropriately, the reproduction process should 
continually generate better children from good parents. 
The algorithm can then produce populations of better 
and better individuals, converging finally on results 
close to a global optimum. Additionally, GA can 
efficiently search large and complex (i.e., possessing 
many local optima) spaces to find nearly a global 
optima (Ref. 45). 

In addition to that, genetic algorithm does not have 
the same problem with scaling as back-propagation. 
One reason for this is that it generally improves the 
current best candidate monotonically. It does this by 
keeping the current best individual as part of their 
population while they search for better candidates. 
Moreover, supervised learning algorithms suffer from 
the possibility of getting trapped on suboptimal 
solutions. Genetic algorithms are generally not bothered 
by local minima. The mutation and crossover operators 
can step from a valley across a hill to an even lower 
valley with no more difficulty than descending directly 
into a valley. So GA enables the learning process to 

escape from entrapment in local minima in instances 
where the back-propagation algorithm converges 
prematurely. 

To create a genetic algorithm, a number of 
parameters was required: a method of encoding 
chromosomes, the fitness function used to calculate the 
fitness values of chromosomes, the population size, 
initial population, maximum number of generations, 
selection method, crossover function, mutation method. 
The implementation of the genetic algorithm we used 
for weight adaptation was as follows. The chromosome 
length was set according to the formula: D * s +  s, 
where s is the number of hidden neurons and D is the 
dimension of the input vector. A specific gene of a 
chromosome was a float value and represented a 
specific weight in the neural network. The whole 

chromosome represented weights of the whole neural 
network. The fitting function for evaluating the 
chromosomes was the mean square error function 
(MSE). The chromosome (individual) with the best 
MSE was automatically transferred into the next 
generation. The other individuals of the next generation 
were chosen as follows: By tournament selection 
individuals were randomly chosen from the population. 
The fittest of them was then chosen as a parent. The 
second parent was chosen in the same way. The new 
indiduals was then created by crossover operation. If the 
generated value from <0,1) was lower than 0.5 the 
weight of the first parent at the specific position was 
assigned to the new individual. Otherwise, the new 
individual received the weight of the second parent. The 
illustration of crossover operation is shown in Figure 8. 

Fig. 8.  Illustration of the implemented crossover operation. 

7. Results and Discussion 

For volatility (variance) modelling we followed several 
studies in the literature (see Refs. 46, 47 and 48) and 
measured the volatility of EUR/GBP currency by its 
squared daily first differences: 

22
yt Δ=

∧

σ      (18) 
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Proof. From the chapter five we know that the 
differenced series is an ARMA(0,0) process; therefore: 

ty ε=Δ     (19) 

Let define vt as the error between the square residuals 
and the variance 

22
tttv σε −=     (20) 

according to ARCH process 
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ttt v+= 22 σε   , vt ~ iid(0,1)   (23) 

hence 

22
yt Δ=

∧

σ      (24) 

 
In our tests, we used one-step-ahead, frequently 

called as static, forecasts, i.e. the horizon of predictions 
was equal to one day. As we said, we used MSE (Mean 
Square Error) and RMSE (root mean square error) 
numerical characteristics for assessing all models. 

Firstly, we estimated and tested the ARCH(4) 
model for volatility defined in (11). However, we also 
tested some other statistical models modelling 
conditional variance such as GARCH(1,1) model (Ref. 
2) which is supposed to be so-called universal model in 
financial domain. We also tested EGARCH(1,1,1) 
defined in (8). Important to remember that the 
estimation of these models was only based on 1306 in-
sample observations, in order to make ex-ante 
predictions with remaining 1304 observations. We used 
the Marquardt optimization procedure for finding the 
optimal values of ARCH/GARCH parameters. Initial 
values of parameters were counted using Ordinary Least 
Squares (OLS) method and these values were then 
optimized by iterative process constisted of 500 
iterations. Convergence rate was set to 0.0001. The 
forecasting ability of particular networks was measured 
by the MSE criterion of ex post forecast periods 
(validation data set). 

As for models based on neural networks, we 
implemented three models, each of them was an 
implementation of feedforward neural network of RBF 
type (Ref. 34). In addition to that we implemented three 

different optimization techniques for adaptation of 
weights (parameters) of this network – genetic 
algorithm, standard back-propagation algorithm (BP) as 
well as a combination of K-means clustering combined 
with the back-propagation (KM+BP). We implemented 
all of these algorithms and models by ourselves using 
the JAVA programming language. The approximation 
as well as forecasting results measured by MSE were 
calculated analogously as in the case of ARCH/GARCH 
models. 

As for the inputs into our ANN models, we used the 
information from the statistical models, particularly 
from ARCH(4). Looking at the equation of the ARCH(4) 
model we knew that the conditional variance was 
dependent on the previous four lagged squared residuals. 
Therefore we used this information to construct a hybrid 
neural network (so called ARCH-RBF neural network) 
which used the residuals from ARCH(4) model to 
compute the outputs (variance). This approach is shown 
in Figure 9. 

 
 
 
 

 

 

 

 

Fig. 9.  The suggested and implemented model of ARCH-RBF 
neural network. 

For adaptation via BP we used learning rate of 0.1, 
0.05 respectively. As for adaptive K-means, we used 
10000 cycles and the learning rate of K-means 
adaptation was set to 0.1, 0.05 respectively. The number 
of clusters was set to the number of hidden neurons. 

We also tested several configurations of genetic 
algorithms with different population size, different 
mutation rates as well as size of the first choice process. 
For this particular data the best mutation rate showed to 
be 0.1, 0.2 respectively. If performed, the specific gene 
(weight) of a chromosome was changed to a random 
value. The best population sizes were 500 and 1000 
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individuals. The first choice crossover was set with 
probability p1=0.02 and the second one with p2 = 0.5. 
The results for in-sample predictions are stated in   
Table 1 and results for out-of-sample predictions (ex-
post predictions) are stated in Table 2. 

Table 1.  Prediction accuracy of tested models 
measured by MSE (in-sample predictions). 

 Learning method 
RBF configuration RBF (BP) RBF (KM) RBF (GA)

(4 – 3 – 1) 5,3664*10-3 2,4832*10-10 2,5547*10-10

(4 – 5 – 1) 46933*10-3 2,2493*10-10 2,4505*10-10

(4 – 7 – 1)  2,6660*10-10 1,9481*10-9 5,5255*10-10

(4 – 10 – 1)  1,6411*10-2 4,5823*10-9 3,0536*10-10

 Error Distribution 
Statistical model Gaussian Student GED 

ARCH(4) 2,2350*10-10 2,2360*10-10 2,2353*10-10

GARCH(1,1) 2,1718*10-10 2,1726*10-10 2,1722*10-10

EGARCH(1,1,1) 2,1644*10-10 2,1642*10-10 2,1643*10-10

 

Table 2.  Prediction accuracy of tested models 
measured by MSE (out-of-sample predictions). 

 Learning method 
RBF configuration RBF (BP) RBF (KM) RBF (GA)

(4 – 3 – 1) 4,1471*10-9 3,9282*10-9 4,2028*10-9

(4 – 5 – 1) 4,1590*10-9 4,2222*10-9 4,1587*10-9

(4 – 7 – 1)  4,2156*10-9 1,1480*10-8 4,1170*10-9

(4 – 10 – 1)  4,5086*10-9 7,8121*10-9 4,9923*10-9

 Error Distribution 
Statistical model Gaussian Student GED 

ARCH(4) 3,8203*10-9 3,8054*10-9 3,8143*10-9

GARCH(1,1) 3,5058*10-9 3,5175*10-9 3,5099*10-9

EGARCH(1,1,1) 3,4809*10-9 3,4836*10-9 3,4851*10-9

 
The standard back-propagation algorithm for 

weights adaptation showed to be a weakness of the 
network. The convergence was really slow (cca 5000 
epochs) and in addition to that, resulting from many 
experiments with learning rate and the initialization by 
random weights, it generally converged to any local 
minimum on the error surface. Therefore there was no 
guarantee that the algorithm would converge to global 
minimum. In addition, this algorithm was very 
dependent on the initialized random weights. Due to this, 
generally a lot of more epochs was needed to achieve 
reasonable accuracy compared to K-means + BP.  

Bearing in mind these disadvantages of BP, we also 
tested K-means, that was used in the phase of non-
random initialization of weight vector w performed 

before the phase of network learning. Besides lower 
MSE at lower configurations of hidden neurons (three, 
five), another advantage of using K-means upgrade (but 
also GA) was the consistency of predictions. The 
standard deviation of these methods was uncomparably 
lower than the standard deviation when using the 
standard back-propagation. Moreover, the biggest 
strength of K-means was in the speed of convergence of 
the network. Without K-means, it took considerably 
longer time to achieve the minimum. However, when 
the K-means was used, the time (number of epochs) for 
reaching the minimum was much shorter (cca 500 to 
1000 epochs). Therefore, the advantage of using K-
means together with back-propagation is in the speed of 
adaptivity rather than in better predictions. However, 
one must bear in mind that K-means is a relatively 
efficient algorithm only in the domain of non-extreme 
values. Otherwise, other advanced non-hierarchical 
clustering algorithms must be used. 

Having tested also genetic algorithm in weights 
adaptation, we found out the convergence was also 
considerably faster than at back-propagation. In addition 
to that, genetic algorithm did not have the same problem 
with scaling as back-propagation. One reason for this is 
that GA generally improves the current best candidate 
monotonically. It does this by keeping the current best 
individual as part of their population while they search 
for better candidates.  

However, the acuuracy results were not very 
different from the other two optimization techniques; in 
some cases the optimization methods based on BP were 
even more accurate. As according to the theory, genetic 
algorithms are not bothered by local minimum problem 
(since the algorithms operate on a population instead of 
a single point in the search space, they climb many 
peaks in parallel and therefore reduce the probability of 
finding local minima) such as BP and as GA are also 
especially capable of handling problems in which the 
objective function is discontinuous or non differentiable, 
nonconvex, multimodal or noise; we expected better 
results than we got. This could, however, be caused due 
to non-optimized parameters of GA. Except for our 
experiments and tests with the best configuration of GA 
parameters, we also tested the optimization procedure 
stated in (Ref. 49) which was in our case not very 
helpful. Maybe, testing some other optimization 
procedure for the best parameters of GA would lead to 
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better results of genetic algorithm. The second reason 
could be that the standard unbiased crossover function 
was used. The biased crossover function stated in (Ref. 
45) could enhance our solution. 

It is also to mention that the best results were 
achieved with lower number of neurons. Following 
from that one can deduce that for remembering the 
relationships in this time series it is enough to use 
smaller number of hidden neurons.  

The final comparison of statistical as well as neural 
networks models is stated in Table 3. 

Table 3.  Final Comparison of out-of-sample (ex-
post) predictions. 

 Numerical characteristics  
Model MSE E RMSE E Rank

RBF (4 - 3 – 1) (BP) 4,1471*10-9 0,00006439 6 
RBF (4 - 3 – 1) (KM) 3,9282*10-9 0,00006267 4 
RBF (4 - 7 – 1) (GA) 4,1170*10-9 0,00006416 5 
ARCH(4) (Student) 3,8054*10-9 0,00006168 3 
GARCH(1,1) (Gauss) 3,5058*10-9 0,00005920 2 

EGARCH(1,1,1) (Gauss) 3,4809*10-9 0,00005899 1 
 
Deducing from Table 3, we can say that on the 

validation set the best results were achieved with 
EGARCH(1,1,1) model. On the other hand, the worst 
results were achieved with RBF neural network 
combined with the standard back-propagation algorithm. 
However, the differences between the results were very 
small and the difference in results between the best and 
worst model is only about nine per cent.  

Following from that, our suggested RBF hybrid 
neural network combined with ARCH inputs showed to 
be an efficient and accurate way of forecasting 
conditional volatility in financial domain. But, generally 
speaking, the statistical models achieved a little bit 
higher accuracy than the neural networks models. 
However, the difference was very small and the results 
were almost of the same accuracy. However, the 
achieved ex post accuracy of ARCH-RBF                
(best RMSE = 0.00006267) is still reasonable and 
acceptable for use in forecasting volatility which plays 
an important role in managerial decision processes in 
the finance area. Moreover, a little bit worse results of 
neural network models can be the result of the following 
factors: 

• non-optimized parameters of genetic algorithm, 
which could cause a little bit worse final solution 
than expected  

• back-propagation as the non-ideal optimization  
technique for parameters optimization  

• The non-ideals inputs coming from the statistical 
ARCH(4) model  

• The data we chose for our experiments were not 
“representative“. One can not eliminate the 
assumption saying that if we used other data for our 
experiments the neural network models would 
outperform the ARCH/GARCH models. 
 
Coming from that, there are more options of how to 

upgrade this model in the future:  
1) We could better „optimize“ the parameters of 

genetic algorithm. We could apply other known 
optimization procedure than (Ref. 49) into our neural 
network models. It could improve the solution quite a 
lot.  

2) Apart from the standard back-propagation 
algorithm it would be reasonable to use and implement 
the more advanced version of this algorithm (to avoid 
the imprisonment in the local minum). We could use 
some of the versions of adaptive back-propagation.  

3) Probably the outputs of the neural network 
models would be more accurate if we did not use the 
inputs from ARCH model. We could use only the 
information from ARCH model and the residuals would 
come from the RBF itself. It could be done by 
implemeting a version of recurrent ARCH-RBF neural 
network.  

4) Probably, even better results could be achieved 
by implementing the recurrent RBF neural network 
based on GARCH model, not ARCH (so called 
recurrent GARCH-RBF). 

5) The RBF model could be enhanced by 
implementing error-correction part, i.e. smoothing the 
error (residual) of the RBF neural network by using m-
period weighted or exponential or simple moving 
average such as: 

,tt
RBF
t ue +=ε    )1,0(iidut ≈    (25) 
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8. Conclusion 

In risk management, finding appropriate models for risk 
quantification is a must. Therefore it is no surprise that 
volatility forecasting have been subject to research in 
this domain. The main reason for forecasting volatility 
for risk managers is that volatility is extremely 
important. It is due to the fact that a large part of risk 
management is measuring the potential future losses of 
a portfolio of assets (and volatility modelling provides a 
simple approach to calculating value at risk of a 
financial position in risk management), and in order to 
measure these potential losses, estimates must be made 
of future volatilities. Therefore, appropriate models for 
volatility dynamics in these markets are of great interest 
to financial risk managers all over the world. 

In this paper, we investigated the modelling of 
volatility dynamics of EUR/GBP exchange rate 
differences. We examined two types for volatility 
forecasting – the models based on statistics and neural 
network models. We evaluated the effectiveness of 
various volatility models with respect to forecasting 
market risk in the exchange rate market, EUR/GBP 
more specifically. While there is a stream of literature 
examining performance of models for volatility based 
on statistical approach, this is a pioneer study to 
particularly focus on forecasting volatility with neural 
networks. 

For all our tests, the data were divided into training 
set and validation set. The models were quantified only 
on training set and then they were tested on out-of-
sample prediction interval to evaluate their prediction 
power. The out-of-sample period, that has been tested in 
this study contained data from November, 1, 2008 to 
October, 31, 2013. The reason for doing that was that 
models that perform well in the considered out-of-
sample period may well underperform in future periods, 
particularly when market conditions change. Both in-
sample and out-of-sample forecasts were evaluated 
using statistical summary measures of model’s forecast 
accuracy. 

As for statistical models, we evaluated three most 
common models for volatility forecasting – the  
universal GARCH model, the basic ARCH and 
EGARCH model which is able to model leverage 
effects. In addition to that, all three models were 

evaluated with Gaussian, Student and GED error 
distrubutions.  

In case of models based on neural network 
approach, we suggested new model for forecasting 
volatility with neural networks – the ARCH-RBF neural 
network. We used the proxy metrics to calculate the 
actual volatility and so we were able to implement the 
neural network with inputs from the quantified ARCH 
model and developed the new approach for forecasting 
volatility. Moreover, we constructed ARCH-RBF neural 
network with three different types of optimization 
techniques. Except for the standard back-propagation, 
we combined an K-means clustering into the RBF to 
achieve higher accuracy of the network. Both of the 
algorithms were used in the process of adapting weights 
of the network. The reason for incorporating other 
algorithms into the network was that the back-
propagation was considered a weakness of the RBF. In 
addition, we also eliminated the back-propagation 
algorithm by using the genetic algorithm instead. In the 
final comparison of the selected optimization techniques 
both of these upgrades showed to be helpful in the 
process of creating more accurate forecasts of volatility 
and they should be definitely used instead of the 
standardy  back-propagation. 

According to results we achieved, the statistical 
approach was better than the neural network models. 
However, the differences in accuracy of volatility 
forecasting were very small. None of the considered 
models performed significantly better than the rest with 
respect to the considered criteria. So the achieved ex 
post accuracy of ARCH-RBF neural network models is 
still reasonable and acceptable for use in forecasting 
systems that routinely predict volatility in managerial 
decision processes in the financial domain. Moreover, a 
little bit higher error could be caused by non-optimizing 
parameters of genetic algorithm, non-ideal inputs of 
ARCH model or just due to type of data we used. 

On the other hand, there is definitely a reason for 
using ARCH-RBF neural network in the domain of 
volatility forecasting as this model showed to be a good 
tool in volatility forecasting. Neural networks are 
capable of providing information in the form of 
forecasts with an acceptable degree of uncertainty. They 
are relatively fast and have the ability to generalize. 
Moreover, the ARCH-RBF has such attributes as 
computational efficiency, simplicity, and ease adjusting 
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to changes in the process being forecast. 
ARCH/GARCH models require more costs of 
development, installation and operation in a 
management system, management comprehension and 
cooperation, and often a lot of computational time.  

Finally, accuracy of our suggested model could be 
improved by upgrading the model by some of the 
upgrades we discussed in the Results & Discussion 
chapter (such as recurrent version of ARCH-RBF, 
GARCH-RBF, Error-correction RBF, etc). There is a 
strong assumption that this upgrade can cause this 
model to have even a great accuracy advantage over the 
statistical models. We leave the investigation of these 
issues to future work. 
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Appendix A.  Statistical modelling of EUR/GBP

Table 4.  Unit root tests of EUR/GBP. 

Test Original series [p-value] 1st differences  [p-value] 

Augmented Dickey-
Fuller (I) -1.042297 

[0.9225] (I) -36.08501 
[0.0000] 

 (II) -0.282886 
[0.9249] (II) -36.10204 

[0.0000] 

 (III) -1.408858 
[0.8583] (III) -36.13347 

[0.0000] 

Phillips-Perron (I) 1.169134 
[0.9381] (I) -36.23934 

[0.0000] 

 (II) -0.067288 
[0.9510] (II) -36.28507 

[0.0000] 

 (III) -1.123755 
[0.9017] (III) -36.37293 

[0.0000] 

Test Window Spectral estimation method 

  Bartlett kernel Quadratic spectral kernel 

  Original series Returns Original series Returns 

  (II) (III) (II) (III) (II) (III) (II) (III) 

KPSS Newey-
West 

2.057885 
(0.463) 

0.738516
(0.146) 

0.281293
(0.463) 

0.060591
(0.146) 

4.078739
(0.463) 

1.4573
91 
(0.146)

0.265212 
(0.463) 

0.056470
(0.146) 

H0: 
Stationary 
Series 

Andrews 0.706988 
(0.463) 

0.153498
(0.146) 

0.229661
(0.463) 

0.048072
(0.146) 

2.538563
(0.463) 

0.2234
34 
(0.146)

0.229661 
(0.463) 

0.047929
(0.146) 

Elliot-
Rothenberg
-Stock 

Newey-
West 

19.93783 
(3.26) 

28.96699
(5.62) 

0.048644
(3.26) 

0.182369
(5.62) 

18.89474
(3.26) 

27.414
43 
(5.62) 

0.045855 
(3.26) 

0.169872
(5.62) 

H0: unit 
root Andrews 16.47829 

(3.26) 
23.99466
(5.62) 

0.039740
(3.26) 

0.145021
(5.62) 

16.47612
(3.26) 

23.995
56 
(5.62) 

0.039744 
(3.26) 

0.145054
(5.62) 

(I): model without constant and deterministic trend (5%) 
(II): model with constant and without deterministic trend (5%) 
(III): model with constant and deterministic trend (5%)

Table 5.  ACF and PACF of EUR/GBP 1st differences. 
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Table 6.  Normality tests on distribution of residuals (first differences) and other main characteristics. 

Skewness Kurtosis J.B. A.D. ARCH-LM statistic
0.217321 4.890953 204.7010 

[0.0000] 
6.802221 
[0.0000] 

11.64566 
[0.0000] 

J.B. Jarque-Bera statistic, A.D. Anderson-Darling statistic 

Table 7.  BDS test results on the series of AR(0) residuals. 

 

 

 

 

Table 8.  Correlogram of squared residuals (1st differences). 

 

 

 

 

 

 

 

 

Table 9.  ACF and PACF of AR(0)-ARCH(4) residuals. 
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Table 10.  Characteristics of ARCH(4) model. 
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