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Abstract 

The paper is concerned with measuring of risks in managerial decision-making. It builds upon the uncertainty of 
economic information, which is converted into the concept of risk expressed in terms of probability and using 
confidence intervals and standard deviations of the predicted quantities. The paper explains the relation of a degree 
of risk expressed by the classical information measure, bit, by the concept of confidence intervals, or possibly by 
the standard deviation. Forecasting models are applied which are based on a statistical theory and a neural 
approach. The aim is also to examine whether potentially highly non-linear neural network models outperforms the 
advanced statistical methods and better reduce risk in managerial decision-making, or they yield competitive 
results. A method for finding the forecasting horizon within which the risk is minimal is also presented. 

Keywords: Confidence interval; Entropy; Prediction models; Neural networks; ARIMA/ARCH models; Managerial 
decision; Risk assessment 

1. Introduction 

An important sphere of information necessary for 
management of economic processes on all managerial 
levels is the information about the future development of 
quantities expressed quantitatively, which is used to 
characterize the state and the development of the object 
or process. Evidence shows that it is possible to reduce 
uncertainty by a suitable choice and use of forecasting 
models based on statistical methods, soft computing and 
artificial intelligence methods. In comparison with the 
manager's expert estimates, these models based on 
statistical and soft computing methods or artificial 
intelligence methods are capable of providing 
information in the form of forecasts of quantities with an 
acceptable degree of uncertainty. The manager using 
these forecasts is able to make better decisions, i.e. such 
decisions whose risks in achieving targets are minimized.  

Mathematical statistics Cox and Hinkley and 
Weisberg (see Refs. 1, 2) offer the theory of point 
estimates and confidence intervals. The manager can set 
and influence the span of these confidence intervals. The 

confidence interval indicates the span of possible values 
into which falls the future estimate of the forecasted 
quantity with the chosen probability defined by the 
manager. This way the limits of the possible future 
values are set. Point or interval estimates of the future 
values of various economic indicators are important for 
the strategic manager's decision-making. When 
determining information entropy in decision-making, it is 
useful to focus on how the confidence interval for the 
forecasted economic quantity can be made more precise, 
i.e. narrowed by using the forecasting model. A 
significant prerequisite for the application of such a 
model in management is that apart from the increased 
reliability of decision-making, the model output results in 
uncertainty reduction, which makes decision-making 
easier and less weighted with risk. The fact or statement 
that uncertainty reduction facilitates the manager's 
decision-making is not sufficient. The crucial factor is 
how specifically the entropy change manifests itself in 
the consequences of the decision. Not only will it be 
“easier” to make the decision, but more importantly the 
decision will be more effective in the long run.  
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One of the approaches to understanding uncertainty 
in forecasting models is understanding it as the standard 
deviation σ of the forecasted quantity used by Marcek 
(see Refs. 3, 4). This approach is used with measuring 
risks of prognoses of economic time series and of many 
economic and financial models and methods. E. g. 
Applebaum, Bertoin (see Refs. 5, 6) used it in Lévy 
processes, Havlicky; Medova and Kriacou (see Refs. 7, 
8) in methods based on the extreme value theory. The 
standard deviation as a degree of uncertainty or risk of 
forecasted quantity values estimates is proportional to the 
statistical degree of accuracy of the forecast defined as 
Root Mean Square Error (RMSE). This approach is used 
with measuring risks of prognoses of many economic 
and financial forecasting models, and in forecasting 
models of economic time series, models for managing 
financial risk.  

For management, the approach based on the 
statistical analysis of the dispersion of the quantity 
values, or on the standard deviation analysis, is the most 
comprehensible way of representing uncertainty. It is 
needed to be stated that the standard deviation does not 
reflect entropy in its true substance as uncertainty which 
is indicated in bits (binary digits). On the other hand, 
uncertainty is closely related to how precise are the 
estimates of the future values of quantities that managers 
have at their disposal. The less precise the estimate, the 
larger the standard deviation, and the higher the 
uncertainty that the information is weighted with. This 
view of uncertainty does not articulate it in its true sense, 
however, it expresses very well its inner essence and the 
mutual relation of entropy and decision-making. 

The tasks dealing with the influence of information 
entropy on managerial decision-making have not been 
described in literature yet. An important prerequisite is 
whether the calculation of the degree of uncertainty itself 
has a sufficient informative value for managers in order 
for them to follow it during the process of decision-
making. If it were only a very abstract value 
insufficiently explained and vaguely described in 
literature, it would hardly be applied in the process of 
managerial decision-making, where the data serving as 
the basis for managerial decision-making must be 
relevant and clearly presented. Due to the possibility of 
achieving effects by applying forecasting models in 
managerial decision-making, an exceptionally inter-
esting, topical and supporting tool offers itself. Our 
motivation for elaborating it in theory was the fact that to 

this day there is no theory that would describe the way to 
reduce or possibly remove uncertainty in management 
and to use it to calculate effects.  

At present, entropy as a measure of uncertainty is 
described in several publications. The entropy, al-
ongside with two of its derivatives, the relative entropy 
and the mutual information, have been used with great 
success in the information-theoretic analysis of 
communication systems. Our recent research was 
concerned with the elaboration of the missing theory of 
entropy as a category of uncertainty and risk in 
managerial decision-making. Decision-making is one of 
the basic human activities, whose quality influences the 
result of the subsequent activities.  

The objective of the paper is to point out specific 
outlines of entropy and risk categories, determine their 
content in structured decision-making as a category 
which conditions the ways and methods of management 
not only at the stage of decision-making but also the 
impacts at the stage of implementation of the decision, 
where the consequences of these decisions (effects or 
losses) will manifest themselves.  

The issue of measuring risk in management and its 
accompanying phenomena is divided into six chapters in 
the present paper. Chapter two is devoted to 
characterizing risk and its manifestation in decision-
making in uncertainty conditions. In the third chapter we 
present some statistical measures of uncertainty to probe 
the risk scenes of forecasting models for 
financial/economic time series. Chapter four is devoted 
to briefly characterizing two latest modelling 
methodologies used for high financial time series. In the 
fifth chapter, risk reduction with the use of forecasting 
models based on the classical (statistical) methods and 
models based on artificial intelligence is documented and 
assessed. Chapter sixth summarizes the main topics 
results.  

2. Risk and its manifestation in decision-making 
in uncertainty conditions  

Decision-making has a dominant position in man-
agement. Implementation of planning, organization, 
coordination and work with people and the results of 
these activities are based on decision-making. Man-
agerial decision-making is understood as the reaction of 
the manager to the incurred problems, i.e. it is a process 
of analyzing and thinking, the result of which is a 
decision. There are many approaches to decision-making. 

Published by Atlantis Press 
    Copyright: the authors 
                   14



                                                                                                                                                                                                  Risk Scenes Of  Managerial… 
 

Selecting one of them depends on the character of the 
problem, on the time available, and on the manager's 
abilities. Herbert Simon (see Refs. 9, 10) distinguishes 
two ways of decision-making according to the 
occurrence of the problem at hand: Programmed 
decision-making deals with problems that the manager 
has already dealt with before. These are routine and 
recurring problems. The process of solving these 
problems is well-established, it is usually possible to 
convert in into an algorithm, it is often programmed, and 
standard procedures are usually used. Non-programmed 
decision-making deals with problems that the manager 
has not dealt with before. These are more complex and 
unique problems. The manager does not know in advance 
how to proceed, and a creative solution is required of 
him.  

Decision-making on the level of lower management 
usually involves theories and tools such as linear and 
non-linear programming, dynamic programming, game 
theory, queuing theory, inventory theory, probability 
theory, renewal theory, graph theory etc. Decision 
making on the level of top management is significantly 
influenced by time. Top management uses tools not only 
from management but also from other science branches 
such as mathematical statistics, fuzzy set theory, 
econometrics, operational research, etc. Top managers 
use these tools to obtain the most precise estimates of the 
future development of quantities and processes possible. 
These estimates represent important information on 
which managers base their decisions. 

Specific choice of tools and models for decision-
making depends on whether the manager has precise and 
complete or imprecise and incomplete information at 
their disposal. The complexity of managerial decision-
making relates to decision-making with incomplete 
information. Most of the real systems can only be 
described incompletely, i.e. with information which 
cannot be formally expressed by unequivocally set 
parameters. This is uncertain information then. In 
practice, according to Ref. 11, there are mainly two types 
of such information: According to the first type, 
uncertain information makes it impossible to exactly 
determine the future behaviour of the examined system. 
This type of uncertainty is called stochastic, and it can 
usually be modelled using the probability theory.  

Stochastic uncertainty is concerned with the category 
of the probability risk, which is determined as a scene in 
the future associated with the specific adverse incident 

that we are able to predict it using probability theory and 
a lot of data. In this manuscript, we will concern with this 
type models, which may be described by Huang (see Ref. 
12) as follows. Let D be a managerial prediction system 
including explanatory variables V to explain the 
behaviour of the variable to be forecast, and faults 
represented as forecast errors te  in time t = 1, 2,…n. A 
risk function R in term of the conceptual model D for 
having a risk scene can be represented as 

( ,  ),      1,  2,...tR D V e t n= =  
To assess the managerial prediction risk R we apply 

different forecasting models which parameters are 
estimated by statistical tools. 

The second type of uncertainty is connected with the 
description or formulation of the actual meaning of the 
phenomena or statements about them. This is semantic 
uncertainty. Natural language words semantics with 
uncertainty, i.e. with meanings of words and individual 
statements not being exact, is typical of natural language. 
This uncertainty has the character of possibility rather 
than probability, and it is most often modelled by fuzzy 
systems. For more details see Refs. 13 – 16. As far as 
decision-making with risk is concerned, this is the case 
of decision-making where actual information about real 
systems is uncertain, and it is not important if the 
uncertainty is caused by incomplete information about 
the system's behaviour, or if it is semantic uncertainty. In 
the further text, in accordance with Ref. 12, the risk 
connected with managerial decision-making will be 
modelled using probability models and understood as a 
statistical term of the expected value between two 
extreme states of decision, i.e. with full uncertainty and 
decision with certainty. 

3. Statistical measures of uncertainty  

We present some statistical measures of uncertainty to 
probe the risk scenes of forecasting models for financial 
time series. The fact that the classical forecasting models 
are based on the probability theory makes it obvious that 
the models are affected by stochastic uncertainty. It is 
natural that mangers try to obtain maximum utilizable 
information, i.e. the most precise values of the future 
estimate possible. For the assessment of the estimate 
uncertainty degree, the method of confidence intervals 
for point forecasts can be used.  

With determining forecast confidence intervals based 
on the classical statistical forecasting models such as the 
models of regression analysis, exponential smoothing, 
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and Winter's seasonal models is concerned e.g. by 
Gaynor and Kirkpatrick (see Ref. 17). A more 
complicated situation is in case of models based on 
artificial intelligence such as GMDH or the classical 
neural networks with adaptation of parameters by the 
gradient method using Back-propagation algorithm. In 
this case it is possible to test the H0 hypothesis of the 
expected type of probability distribution to determine 
confidence intervals provided that residuals have a 
normal probability distribution according to Ref. 18, and 
this hypothesis can be verified using χ2 test of good fit on 
levels of significance set in advance. It is a well-known, 
widely used and relatively universal method of 
mathematical statistics. To obtain the correct result, it is 
necessary for the statistical data file to have at least 50 
values. The span of the confidence interval is related to 
the estimate precision. The more precise the input from 
the forecasting model, the more precisely it is possible to 
set the span of the confidence interval, and the larger part 
of uncertainty is removed. Using the χ2 test of good fit, 
the H0 hypothesis must be verified on the level of 
significance α = 0.05 and α = 0.01, and this hypothesis 
claims that the residuals of the forecasted values from the 
actual values can be considered as a data file with a 
normal probability distribution. The confidence interval 
can be then calculated according to the following 
expression 

        
n

kx
n

kxx σσ
αα .,. +−∈           （1）  

where αk  is the critical value of the standardized 
normal probability distribution, α is the level of 
significance, σ is the standard deviation, n is the number 
of observations, and x  is the expected value. For the 
chosen probability P = 0.95, the confidence interval 
determines the limits which the estimate value will not 
exceed with 95% probability. The value α = 1−P = 0.05 
is the so-called level of significance, which means the 
probability that a random variable of the estimate will 
acquire a value outside the interval 

     
n

kx
n

kx σσ
αα +− ,  

Interesting about the support of the preference of 
forecasting models based e.g. on neural networks to 
managers' expert estimates in managerial decision-
making is the information about the probability change. 
The calculation of this probability is possible from 
expression (1) as the level of significance k  

              1

e s t

nk x a
σ

−
= −                    （2） 

where α is the lower limit of the forecast interval of the 
prognosis calculated by neural network, estσ  is the 
standard deviation and x  is the expected value (mean).  

Another measure of uncertainty used in the theory of 
information is entropy. The entropy, alongside with two 
of its derivatives, the relative entropy and the mutual 
information, have been used with great success in the 
information-theoretic analysis of communication systems 
(see Refs. 19, 20 for details). Entropy and also 
uncertainty is expressed by the amount of information 
that we get after performing an experiment. For example, 
if we get a message that an event A has occurred with 
probability P(A), we also get information I(A) equal 

2log ( )P A−  bit.  
In case the event A consists of a finite amount of 

measured events, i.e. subsets of probabilistic space Ω  
while iA A∈  for 1,  2,...i n= , 

1

n
ii

A
=

Ω =U  and 
0i jA A =I  for i j≠  is valid, then the entropy expressed 

by Sannon´s definition is (see Ref. 20) 
 

2
1 1

( ) ( ). ( ) ( ).log ( )
n n

i i i i
i i

H P I A P A I A P A
= =

= = −∑ ∑  （3）     

In this connection, a very important question is, how 
will the entropy change if the estimate is more precise? 
The probability used in the relation for the calculation of 
entropy is the probability that the estimate value will fall 
into the narrower 95% confidence interval.  

The most frequently measure of uncertainty and risk 
used in literature is the standard deviation. As far as 
relevancy is concerned, it is probably the easiest and, for 
managerial practice, the most comprehensible way of 
expressing and quantification of uncertainty. While the 
entropy indicated in the information unit bit is at present 
a still relatively abstract and almost non-used measure 
for expressing risk in the sphere of managerial decision-
making. Uncertainty in the sense of the standard 
deviation has a higher informative value for managers. 
Uncertainty expressed by the standard deviation has one 
drawback, which is unit incompatibility. Entropy is 
indicated in bits. Despite this fact, as we could see in the 
given examples, it is easier to work with entropy as the 
standard deviation. It is possible to state that reduction of 
entropy of the forecast system was achieved when its 
standard deviation of forecast errors was reduced. It can 
be clearly seen in expression (1). In technical systems, 
rule 3 σ is used which in the figurative meaning provides 
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information about which interval the forecast will almost 
certainly fall into. Therefore, it provides certainty instead 
of uncertainty. But it is a certainty which will not push 
the manager forward with his decision-making if there is 
a big standard deviation. The real solution leading to the 
support of decision-making is reducing uncertainty of the 
forecast system by using a better forecasting model 
which will achieve lesser variability of prognosis errors. 
Described in Ref 21, on the basis of prognosis errors 
analysis, is a method of searching for such a forecast 
horizon for which entropy and thus also prognosis risk is 
minimal. A demonstration the procedure of quantify-
cation of effects arising from the entropy reduction by 
using different forecasting models can be found in Ref. 
22. 

4. Exchange Rate Forecasting: A Statistical and 
Neural Approach  

In the remainder of this paper we investigate the 
application of forecasting models including the two 
representations based on the statistical/econometric 
approach and the neural network one respectively to the 
high frequency forecasting of the exchange rate, the 
Czech crown (CZK) against the Slovak one (CZK/SKK). 
We analyse, discuss and compare the forecast accuracy 
from models which are derived from competing 
statistical and neural network specifications. 

For time series modelling of high frequency data, the 
statistical regression models with disturbances following 
ARCH (AutoRegressive Conditional Heteroscedastic) 
type processes are used. The method of building a 
statistical appropriate time series forecasting model is an 
iterative procedure which consists of the implementation 
of several steps. The main four steps in are: 
identification, estimation, diagnostic checking, and 
forecasting. In the iden-tification step a tentative model is 
identified by studying the behaviour of the 
autocorrelation function (ACF) and partial 
autocorrelation (PACF) functions of the Time series. In 
the estimation step, the estimates for the parameters of 
the tentative model are computed. In the next step, the 
diagnostic checks are performed. The Langrange 
multiplier test is used for testing for heteroscedasticity. 
The adequacy of the model to the data is checked by 
testing the significance and relationship of the 
parameters. To detect non-liner hidden patterns in 
stochastic financial time series of generally high 
frequency the fitted residuals are subjected to the BDS 

test. If any of the tests or residuals is un-acceptable, the 
model must be re-specified and the previous steps 
repeated. Once the appropriate model has been found, it 
can be interpreted and future forecast can be found.  

As an alternative to statistical models we use the 
Radial Basic Function Neural Networks (RBF NN) and 
their fuzzy logic and granular variants. The neural 
network in this study was used as a non-linear 
supplement of the statistical linear ARCH models. The 
structure of the RBF NN is defined by its architecture 
(see Fig. 1). In Fig. 1 each circle or node represents the 
neuron. This neural network consists an input layer with 
input vector x and an output layer with the output value 

tŷ .  
The output signals of the hidden layer are  

  ( ),2 jjo wx −=ψ          （4）        

where x is a k-dimensional neural input vector, jw  
represents the hidden layer weights, 2ψ  are radial basis 
(Gaussian) activation functions (RBF) or cloud activation 
functions (CAF). Note that for an RBF network, the 
hidden layer weights jw  represent the centres jc  of 
activation functions 2ψ .  

 

 

Fig. 1.  RBF neural network architecture. 

To find the weights wj or centres of activation 
functions we used the adaptive (learning) version of K-
means clustering algorithm for s clusters. Cluster 
analysis is regarded as one of the granulation methods, 
i.e. it say why and how to put objects into same granule. 
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Granules are extracted from data in the form of clusters, 
i.e. these entities receive collections of numerical data 
that exhibit some functional or descriptive 
commonalities. The final number of clusters provides the 
number of granules representing RBF neurons in the 
hidden layer. The centers of clusters are regarded as the 
means of granules. A family of granules containing every 
value of input data is called as a granulated view. The 
granulated view of input data consists of a family of 
overlapping granules. The above mentioned learning 
algorithm based on the clustering is regarded as one of 
the granular methods presenting bottom-up granulation, 
i.e. input data are combined into larger granules.The RBF 
network computes the output data set as 

( ) ( )   ,= ,  = ,,= ˆ
1

,
1

2, ∑∑
==

s

j
tjj

s

j
jttjtt ovcxvvcxGy ψ

 N ..., 2, 1, = t            （5）         

where N is the size of data samples, s denotes the 
number of the hidden layer neurons (RBF neurons) and 

tŷ  corresponds to the estimated variable tr  used in 
models (4) and (5). According to Ref. (23) the network 
with one hidden layer and normalised output values tjo , , 
where the normalisation means that the sum of the 
outputs from the hidden layer is equal to 1, is the fuzzy 
logic model or the soft RBF network. In our case, the 
subjects of learning are the weights tjv ,  only. These 
weights can be adapted by the error Back-Propagation 
algorithm. For detailed computational algorithm for the 
ex post forecast RMSE values and the weight update rule 
in the granular network see Ref. 24. 

5. Empirical Studies and Forecasting 
Performan-ce Evaluation  

As we mentioned above, we will investigate the 
application of statistical and RBF NNs forecasting 
models on the high frequency time series data of 
exchange rate CZK/SKK (the Czech crown against the 
Slovak crown). The data is available at www.oanda.com. 
The data was collected for the period January 1, 2007 to 
February 12, 2008 which provided of 702 observations 
(see Fig. 2). To build a forecast model the sample period 
(training data set denoted Α )for analysis r1, ..., r670 was 
defined, i.e. the period over which the forecasting model 
was developed and the ex post forecast period (validation 
data set denoted Ε ) r671, ..., r702 as the time period from 
the first observation after the end of the sample period to 
the most recent observation. By using only the actual and 
forecast values within the ex post forecasting period 
only, the accuracy of the model can be calculated. In our 
case, the basic unit of time for which the forecasts were 
made was a day. Economists and financial managers are 
primarily concerned with short-term forecasting, mostly 
one month (that is 31 days) in the future. Hence, we 
chosen the length of validation data set, as the last 31 
periods. All 670 previous observations were included 
into the training data set.  

Input selection is crucially important for the 
successful development of an ARCH-GARCH model. 
Potential inputs were chosen based on traditional 
statistical analysis: these included the actual exchange 
rates CZK/SKK and lags thereof. 

 

 
 

Fig. 2.  Actual and fitted values of the CZK/SKK exchange rates-model (6). 
 

 
 Residuals are at the bottom. Actual time series represents 

the solid line, the fitted values represents the dotted line.  

The relevant lag structure of potential inputs was 
analysed using traditional statistical tools, i.e. using the 
autocorrelation function (ACF), partial autocorrelation 
function (PACF) and the Akaike/Bayesian information 
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criterion (AIC/BIC): we looked to determine the 
maximum lag for which the PACF coefficient was 
statistically significant and the lag given the minimum 
AIC. According to these criteria the AR(7) model was 
specified. For estimation the parameters of an 
AR+GARCH model the maximum likelihood procedure 
was used. The estimation of the model parameters was 
performed by means of the R-system software and 
resulted into AR(7) + GARCH(1,1) process with mean 
equation 
 

21 0929.07269.0 0.0012ˆ
−− ++= ttt rrr  

543 0651.00821.00843.0 −−− −++ ttt rrr        （6） 
76 0218.005591.0 −− ++ tt rr   

and the variance function 

1
2

1 3616.03049.00000169.0 −− ++= ttt heh       （7） 
where te  are estimated residuals of tε  from Eq. (6).  

After these findings, we calculated predictions for 
next 32 trading days These predictions are displayed in 
Fig. 3.  

The same data used for estimating the statistical 
AR(7) + GARCH(1,1) model was used to train the neural 
network above. The variables forming the right hand site 
of the Eq. 6 were used as the input units. The results of 
the ex post forecasts evaluation are shown in Table 1. 
According to the RMSE measure neural networks show 
slightly worse forecasting results than the AR(7) + 
GARCH(1,1) model. 
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Fig. 3.  Actual (solid) and forecast (dotted) values of the 
CZK/SKK exchange rates time series. 
 

Table 1.  Ex post forecast RMSEs for ARCH-GARCH model 
and RBF NNs (see text for details). 
 

 
Model 

Numb. of 
RBF 

neurons 
(s) 

RMSE 
(risk) 

AR(7)+ 
GARCH(1,1) 

 
0.019 

 5 0.367 
RBF NN(classic) 10 0.367 
 15 0.368 
 5 0.029 
RBF NN(soft) 10 0.030 
 15 0.033 
 5 0.029 
RBF NN(granular) 10 0.029 
 15 0.032 

 
Now, the question arises whether there is a method 

which can help to find an optimal forecasting horizon 
producing minimal forecast errors. In Ref 25 the 
exponential smoothing method is described for 
continually revising of the forecast error by accounting 
for more recent changes in the data. This method was 
also applied in Ref. 21 to find the optimal forecasting 
horizon. 

Suppose that we have a history a sequence of forecast 
errors 1e , 2e , …, ne . We could average all past errors to 
obtain 

∑ == n
t tt nee 1 /         （8） 

and to estimate the standard deviation 
teσ̂  of the last n 

forecast errors as 

          
1

)(
ˆ 1

2

−

−
=

∑
=

n

ee
n

t
tt

et
σ  

（9） 

 
We logically might wish to give more weight to 

recent forecast errors than to older data. Hence, we can 
obtain the smoothed error tS  as follows (see Refs. 25, 
26) 

1)1( −−+= ttt SeS αα  （10） 

where alpha is the smoothing constant, which falls 
between zero and one. The smoothing procedure (10) 
allows us to filter local fluctuations out of our forecast 
error sequence. This procedure is based on averaging 
past forecast error values in a decreasing (exponential) 
manner. The term tS  is interpreted as a weighted 
average. The forecast errors are weighted, with more 
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weight given to the more recent forecast errors. The 
operation defined by Eq. (10) is also called simple 
exponential smoothing. 

Given that we have an estimate of 2ˆ
teσ , we can 

estimate the variance of the smoothed forecast errors, 
2ˆ
tSσ , as follows  

        
1

)(
ˆ 1

2

2

−

−
=
∑
=

n

SS
n

t
tt

tSσ  （11） 

where ∑ == n
t tt nSS 1 / , and the standard deviation 

tSσ̂  of 
the last n forecast errors as 

        
tSσ̂ =

1

)(
1

2

−

−∑
=

n

SS
n

t
tt

 
（12） 

As an illustration of this concept, consider the 
analysis of simple exponential smoothing of the fo-recast 
errors from AR(7) + GARCH(1,1) process expressed by 
equations (5) and (6). Using equations (8) and (9), we 

can estimate the standard deviations 
te

σ̂  for the last 
forecast errors of validation data set (t = 1, 2,…, 31) and 
these one, when simple exponential smoothing for α = 
0.05, 0.010,…, 0.3 is used respectively. These values are 
graphically depicted in Figure 4. 

In Figure 4 we can see that from standard deviations 
of last forecast errors point of view the minimal risk 
value of our forecasting model can be reached when the 
forecasting horizon T is lesser than six.  

Comparing the risk values of our forecasting model 
based on MSE´s criterion in which each forecast error 
has the same weights and the method based on 
exponential smoothing concept, we see that the 
exponential smoothing concept is better. Both methods 
can be used for forecast control. When the risk value 
exceeds the control limit for two or more successive 
forecasting periods, this may be a strong indication that 
something is wrong with the forecasting model. E.g. the 
parameter estimates used in the forecasting model are not 
accurate and must be improved. 

 

 
Fig. 4.  Estimated values of standard deviations of forecast errors for validation data set and standard deviations, when simple 
exponential smoothing used. 

6. Conclusion 

In the present paper we showed the procedure of 
quantitative assessment of risk scene based on 
probability terms using confidence intervals for point 
estimates of economic quantities. We build upon 
measuring uncertainty based on information entropy 
indicated in bits and on measuring based on prognosis 
confidence interval, where uncertainty is expressed in 
terms of the span of the confidence interval and the 
probability that by using forecasting model the set 
prognosis limits around the expected value will not be 
exceeded. We have proposed two approaches for 

determining the forecast accuracy of the forecasting 
system applied to exchange rates time series for Czech 
crown (CZK) against Slovak crown (SKK). The first 
one was based on the latest statistical ARCH-GARCH 
methodology, the second one on the RBF NN. 

The results of the study showed that there are more 
ways of approaching the issue of measuring risk in 
managerial decision-making in companies. It was also 
proved that it is possible to achieve significant risk 
reduction in managerial decision-making by applying 
modern forecasting models based on latest statistical 
methods and information technologies such as neural 
networks developed within artificial intelligence.  
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In direct comparison between statistical ARCH-
GARCH models and fuzzy logic and granular RBF NN, 
the experiment with the daily data indicates that both 
methodologies yield very little and similar RMSE´s 
values. But our experiment shows that RBF NN models 
are economical and computational very efficient, well 
suited for high frequency data forecasting.  

We have also shown that applying the exponential 
smoothing methodology for analysis of past forecast 
errors in forecasting systems enables as to set an 
optimal forecasting horizon in which the risk in 
decision-making process is a minimum. 
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