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1. � INTRODUCTION: TYPICAL INFECTION 
PATTERNS AND REPEATING “WAVE” 
PHASES

Health crisis policy and decisions are based on infection rates so 
need quantitative predictions of risk trends, while medical system 
pandemic planning and response often depends on projected 
emergency bed count capacity which lag infection rates. Since viral 
pandemics exhibit successive waves or peaks of infections, the key 
question is what physical model can explain and predict the risk of 
their occurrence, size trends and timing? The present note expands 
the numerical study idea by Aciola [1] by examining if the dynamic 
community-wide spread can be described and understood using 
classical diffusion theory.

To avoid confusion, the relevant fundamental physics is com-
pletely distinct from the use of the term “diffusion” by sociologists 
and political scientists to qualitatively explain the varying imple-
mentation of pandemic countermeasures and policies between 
nations [2].

The onset and subsequent progress of pandemics such as H1N1 
in 1918 and COVID-19 (aka SARS-CoV-2) in 2020, are known 
to be characterized by multiple increases or “waves” of infections, 
peaking, declining and returning over many 100’s of days. We 

do not re-iterate all the well-documented features of pandem-
ics and their behavior [see, e.g. 3–6], or the many and various  
person-to-person infection pathways and mechanisms [see, e.g. 
7,8]. We distinguish between: the dominant mechanisms of initial 
(direct and local transmission) rapid spreading for the first wave; 
and subsequent slower community spreading and transmission 
for producing the second and more waves (within region/coun-
try). We postulate the first peak or “wave” is the result of rapid 
but mainly externally introduced infections as the virus oppor-
tunistically attacks the first susceptible and unaware hosts, and 
increases limited according to initially rapid (few days) transmis-
sion and incubation timescales. Infections grow exponentially 
by unconstrained random person-to-person transmission in an 
initial sample population or local neighborhood without prior 
resistance or effective countermeasures. The initial peak (which 
we term here Peak 1) is reached in about 30 days until social and 
Non-pharmaceutical Intervention (NPI) countermeasures (e.g. 
improved hygiene, social distancing, improvised quarantines, 
public awareness, etc…) effectively counterbalance the growth 
in the infection rate. The Peak 1 wave subsequently declines uni-
versally according to learning theory from adopting such simple 
countermeasures [9,10].

However, zero risk or rates are not achieved or achievable (as 
known for perennial influenza) due to hidden residual infections, 
asymptomatic cases, and/or undetected importations or “clusters”, 
which ensure the virus continues to be slowly, inexorably and  
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A B S T R AC T
We predict the magnitude and estimate the uncertainties of the spread, growth and maximum expected long-term infection rates 
that affect emergency policies and plans. For the COVID-19 and 1918 viral pandemics, large second or successive peaks, waves 
or plateaux of increased infections occur long after the initial rapid onset. The key question is what physical model can explain 
and predict their occurrence trends and timing? We establish the principal that the timing and magnitude of such increases can 
be based on the well-known physics of classical diffusion theory, so is fundamentally different from the commonly used multi-
parameter epidemiological methods. This physical model illuminates our understanding of the societal viral progress, providing 
quantitative predictions, estimates and uncertainties supporting risk decision-making and resilient medical planning. We obtain 
an approximate relation for predicting the risk of the observed magnitudes, timing and uncertainties of second and more waves, 
as needed for proactive emergency pandemic planning, bed count and decision-making purposes. The dynamic results and 
characteristics are compared and fitted to data using just two physical parameters for a number of countries and regions, and the 
concept shown to apply for both entire national and local regional populations. The present analysis quantitatively shows how 
much the timing and magnitude are reduced by more learning and effective countermeasures. The medical system and health 
policy must recognize and pro-actively plan for such inexorable diffusive spread and large residual infection waves.
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randomly distributed. The virus progressively becomes distrib-
uted throughout the community, and largely undetected or hidden 
progressively continues to spread. This initially low level of mainly 
internally introduced or enabled community-wide spread inside 
countries is widely observed, even in island states where complete 
entry and viral import restrictions, mandates or controls are pos-
sible (like Hawaii, Australia and New Zealand). Since the initial 
infective decline is competing against diffusive increase, the second 
wave onset only starts to be discernable or noticeable many weeks 
after the Peak 1. Eventually, after about 100 days, a second distinct 
“wave” or increase toward a plateau (which we term here Peak 2) is 
more clearly observed, which is also reached before some balance 
is achieved between increased diffusive transmission and effective 
countermeasures.

While not exactly followed by all regions, these overall data pat-
terns, trends and surges are compelling and apparently inde-
pendent of continent, culture, society or century, as shown in  
Figure 1 (the rates per day are normalized to the first peak and the 
temporal evolution measured in days exceeding 100 initial infec-
tions as a nominal start or pandemic threshold). We hypothesize 
that the second and subsequent waves have a fundamentally differ-
ent physical spreading character, having moved from the early rapid 
infection phase of initial local populations dominated by rapid  
personal incubation timescales (3–5 days) and contacts to slower 
and more extensive overall community spreading (50–100 days) 
dominated by slower societal interactions, more cautious behaviors 

and residual infections.1 These phases may of course overlap or not 
be entirely distinct everywhere, so we look to data for guidance, 
quantification and verification.

The usual Susceptibility-Exposed-Infected-Recovery (SEIR) and  
R0 models for the infection rate [11–13] have been fitted using some 
seven parameters to first peak rise and decline data [e.g. 14,15] 
where the infection increase rate is limited by personal incubation 
timescales. Previous work on second waves [16] solved the stan-
dard SEIR model plus a further two equations, giving six first-order 
differential equations with eight variable parameters, four repre-
senting various assumed socio-economic countermeasures (e.g. 
“lockdown”, school closure, perception and learning). Despite the 
SEIR approach being known to be inaccurate and not predictive 
[13], three parameters were first fitted or “calibrated” to data, while 
varying the five remaining of the eight parameters gave differ-
ing Peak 2 to Peak 1 ratios. The results showed oscillations, with 
Peak 2 at 240 days and then a decline, and that “In some cases, the 
second peak was higher than the first peak, while for other param-
eter combinations it was lower.” It was concluded “a second wave of  
COVID-19 on account of the coupled behavior-disease feed-
backs… will characterize many populations” [16]. There were no 
comparisons given to actual data as in our new approach.

To model the societal medico-physics, and avoid so many empir-
ical parameters, we postulate that after the initial peak this sub-
sequent community-wide spreading is dominated and governed 
by random diffusion, with infections seeping steadily, systemati-
cally and inevitably throughout the population, and largely inde-
pendent of countermeasures. As first pointed out by Aciola [1] for 
the first peak using purely numerical solutions: “a simple diffusion 
model treats each individual in a population as a Brownian particle 
…added to this model is the incubation period of the virus and 
a probability of transmission of the virus if individuals are closer 
than a certain distance.” This fundamental idea reflects the reality 
that individual infection transfers and opportunities are statisti-
cally random; and of not being able to identify, track, eliminate or 
monitor all the encounters and social interactions of every infected 
person and prevent such transfers. For a whole society, we are not 
looking at individuals but entire populations and overall societal 
behaviors and the resulting infection trends.

Therefore, for second or other successive waves the problem and 
equation to be solved is essentially Fick’s or Fourier’s Law, a second 
order differential equation, where the net rate of change of infec-
tions at any location is proportional to the incremental infection 
gradient. For any infection number, n, at any time, t, convention-
ally, without additional internal or imported infection sources:2

		    
�
�

�
n
t

D n� 2 �  (1)

The community-wide diffusion coefficient or diffusivity, D, 
physically represents all random person-to-person and intra- 
societal cross infections and is the key parameter to be deduced 

Figure 1 | General idealized trends of pandemic infection waves over the 
last century, with daily infection numbers normalized to the first peak.  
(1) Initial random infections, n0, from external introduction with rapid 
rise (incubation limited timescale, G). (2) Exponential rise to first 
wave peak, nM1, in circa 20–30 days, dM1. (3) Decline due to learning 
(countermeasure like awareness, hygiene, and social distancing…), k.  
(4) Minimum achievable infection rate (or detection threshold), nm.  
(5) Second “wave” apparent onset, n02, at circa 50–100 days (community 
spread limited timescale). (6) Second rise, n(d), from random inter-
community spread (societally embedded). (7) Second peak or plateau, 
nM2, at about, dM2, circa 100+ days often larger than first peak. (8) Plateau 
or decline due to learning, countermeasures plus human host spreading 
limits. (9) Minimum “acceptable” or achievable rate achieved again.  
(10) Additional waves possible (annual, seasonal, social…).

1We utilize infection rates as a leading indicator of spread, while public health officials 
usually focus on death numbers and rates which lag infections; and which fraction of 
infections is variable being highly dependent on the propensity, vulnerability, medical 
treatment and ages of the population so cannot be solely diffusivity dominated.
2For a source add to the RHS a term, say ns′, being the number per unit time.
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from observational data. Importantly, Equation (1) is a second 
order differential equation, so: (a) is fundamentally more gen-
eral than the first order differential equations used in clas-
sic R0 and SEIR epidemiological spread models with multiple 
adjustable parameters; (b) contains a very limited number of 
variable but physically-based coefficients that can be directly 
tested against or fitted to data; and (c) therefore able to draw 
on the foundations and prior knowledge of classical physics and 
methods for heat and concentration diffusion. To illuminate the 
physics, we seek an analytical solution to Equation (1) that is 
testable against publically available data for the second and/or 
subsequent waves.

2.  MATERIALS AND METHODS

2.1.  Basic Theory and Postulates

Exact solutions of Equation (1) are numerical [1] whereas we only 
seek a working correlation to aid our understanding and enable 
rapid estimates for risk decision-making. For the second and suc-
cessive “waves”, we make simplifying assumptions and reasonable 
approximations to derive a basic analytical solution form for the 
dynamic infection trends and the limiting physical societal trans-
mission mechanism, the accuracy and applicability of which can be 
determined by comparisons to data. Hence, even if and as counter-
measures are deployed, without complete isolation or elimination 
the virus spreads:

(a)		 by diffusion in any local region(s) or cities, becoming inevi-
tably embedded in the wider community (regions of higher 
infection numbers naturally infect regions with lower);

(b)	 throughout any national or regional location, all the popula-
tion is equally able to be randomly infected so the distribution 
of the virus is to first order homogenous and any and all infec-
tions are equally possible;

(c)		 with fundamental physics limiting the extent the rate of sub-
sequent community spreading is described by the classic Fick’s 
Law with diffusivity parameters averaged over the population/
region/society; and,

(d)	 being equally possible so affording a simple homogenous 
and one-dimensional approximation, with the number of 
infections, n, some fraction of the total possible, N, where 
usually n <<< N, depending on the overall community 
transmission mechanisms, societal behaviors, and counter-
measure effectiveness.

For some overall societal characteristic effective transmission 
scale, L, after an elapsed time measured in days, d, the rate of 
change of infections or number counted on any day, n(d, L), in one 
dimension Equation (1) becomes,
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nominal minimum achievable and second wave initial numbers, 
nm, and n02, respectively we have,
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Prior physics and classic texts provides the analogous Fourier flux 
solution satisfying Equation (3) [1,17,18] and is the usual error 
function,
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where, the term, LD = (4Dd)1/2, is an effective overall community 
viral diffusive penetration distance or societal transmission “scale”. 
In contrast to the classic multi-parameter SEIR models [13,16] 
there are now only two governing and physically-based parameters 
to be determined.

2.2. � Approximate Correlation Derivation  
for Wave Timing and Magnitude

To guide our thinking for present correlation and risk trending 
purposes, for the large-scale ratios, L/(4Dd)1/2, relevant to whole 
communities and regions during diffusion, we can retain just the 
first term in the series expansion of Equation (4) [see 18 #586], so:
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Usually, the minimum rate number, nm << n(d) and n02, so 
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, and increases initially as (Dd)1/2. The validity, accu-

racy and limitations of this (or any other) approximate analytical 
solution must be demonstrated by data. For any chosen region this 
simple solution Equation (5) has the sensible limiting conditions,  
n → nm as L → ∞, n → n02 as d → 0, and n → ∞ as d → ∞ for 
any given diffusivity, D. After the decrease from Peak 1, we can 
expect to observe an initially slow square root increase in infection 
numbers with time, followed by an inevitable exponential increase 
at longer elapsed times which is a prediction consistent with the 
observations (Figure 1). Writing Equation (5) in a convenient 
non-dimensional form, with L* = LD/L,
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Using Equations (5) and (6) for describing the second wave requires 
determining just two adjustable but physically based parameters: 
the diffusion coefficient, D (m2/day), and the assumed characteris-
tic or effective length scale, L (m), assuming the Peak 1 parameters 
(G and k) still prevail. Both of course depend on some integra-
tion/aggregation of all the exact overall societal viral transmission 
mechanisms (person-to-person, aerosols, crowds, contamination, 
random exposure…), which we simply assume to exist.

We can then also estimate the relative size and timing, dM2, for 
attaining Peak 2 when the diffusive growth is eventually balanced, 
assuming the same NPI learning countermeasures are used (e.g. 
social distancing, improved hygiene, public awareness etc...). For 
Peak 1, the decrease in the increasing rate decreases when the daily 
transmission and incubation increase number, nM1, is comparable 
to or balanced by countermeasures and public awareness. For some 
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learning constant, k, representing the overall countermeasures 
effectiveness and resilience during and after Peak 1 [10],

		      n d n eM
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Here, the parameters for incubation growth for any initial viral 
variant, G, learning recovery, k, and peak day, dM1, are known from 
the Peak 1 prior data trends (Figure 1), and allows quantification of 
countermeasures by evaluating, k. This second wave or “curve flat-
tening” semi-plateau has an asymptote given by dn
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Equation (5), Peak 2 tends to flatten as, d
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erned by the ratio of the learning countermeasure reduction to the 
diffusion increase e-folding rates. The more effective the counter-
measures (k increasing) the earlier the infection curve “flattens”.  
So, with countermeasures, the ratio, R*, of the Peak 1 and Peak 2 
infection rate numbers is the key measure, and for the nominal ini-
tial base or threshold daily rate numbers, n01 and n02, respectively, 
from Equations (5) and (7),
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Given this approximate second plateau, from Equation (8) 
the predicted Peak 2 to Peak 1 rate size ratio is of order, 
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on effective initial learning and the ratio of the low base infec-

tion numbers, 
n
n
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. Using the ratio removes any dependency on 

uncertainties in actual case counts, testing variations and report-
ing protocols. The magnitude ratio for any additional successive 

(third plus) waves, e.g. 
n
n

M

M

3

2
, and timing, dM3, will now depend on 

the subsequent prevailing virus variant growth rate, G, and effective 
countermeasure, k, values after Peak 2, which latter factor can now 
include vaccination administration extent and effectiveness.

3.  RESULTS

3.1. � Comparisons of Theory to Pandemic 
Second Wave Onset Data Trends

Excellent data for daily infection numbers are available in down-
loadable spreadsheet format [19] from January 2020, and from 
WHO, Johns Hopkins University and other reliable sources, includ-
ing local state data from Departments of Public Health websites. As 
a reference origin, we adopt the initial detection/reportable thresh-
old of n > 100 total cases as a datum for the definite onset of signif-
icant infections, d = 0, and varying this threshold has only a minor 
impact as Peak 1 usually occurs within 20–30 days.

The origin of the minimum at the second wave onset, q (d02), is the 
lowest daily infection count continuously achieved following the 
exponential decline from Peak 1, and used to normalize all subse-
quently increasing infection rates, R* = q (d)/q (d02). To encompass 
widely separated and differing societies, we performed test calcu-
lations for ongoing and continuing infection data showing distinct 

second waves as listed in Table 1 for UK, Italy, France, Canada, and 
Australia (as of October 15, 2020). The latter is specifically chosen 
as being a distinct “island state” with comparatively low (but non-
zero) rates but second waves (or “clusters”) despite extensive inter-
nal controls and border/entry restrictions.

Comparisons to the theory are shown in Figure 2, where the fits 
were derived using the range of 0.012 < D < 0.014 m2/s and 7 < 
L < 12 m-values as shown in Table 1 and are largely independent 
of country or societal culture. These fitted parameter values in  
Table 1 indeed are consistent with a whole society reaching a peak 

or plateau at d L
kDM 2

2 1 2

8= ( ) /

 ~ 200 days using k ~ 0.02/day as we 
previously derived for the recovery from Peak 1 in Italy [9] and also 
applicable for UK and Turkey. The values for the long-term diffu-
sion coefficient in Table 1 and Figure 2 are all O(10−2) m2/day, and 
for L ~ 10 m and d ~ 100 days we have, L/(4Dd)1/2 ~ 5, so the first 
term approximation for Equation (5) is reasonable.

The overall agreements with such disparate data are not perfect 
(Canada and UK exhibit over predictions) but the salient overall 
slow growing trend and 100–200 days timescales are reasonable 
(especially for Australia, France and Italy) given the approxima-
tions in the theory. Capturing the steep exponential onset is also 
inexact at present. The Australia case with literally different bound-
ary conditions on infection control shows clearly that Peak 2 can 
also be reached, while terminating the second wave growth as also 
observed in the classic 1918 pandemic [4,20,21].

3.2. � Estimating Second Wave Magnitude 
and Uncertainties

When recovery from Peak 1 is not always complete, n02 > n01, ensur-
ing that Peak 2 daily rate is larger and what is actually observed, 
affecting emergency pandemic planning and decision-making. For 
countries already known to exhibit second wave peaks with recov-
ery/decline, Australia actually had a Peak 1 to Peak 2 infection rate 
magnitude ratio, R

n
n

M

M

* = 2

1

, of 2.2 and Japan of 3. The still evolving 

USA data had a first peak of circa 30,000 at 40 days which, after 
an initial decline at 150 days merged into a second “wave”, almost 
trending to a wavy persistent plateau and a still increasing rate of 

over some 2,000,000 per day, giving a peak ratio of at least 
n
n

M

M

2

1
 ~ 6.  

Within any given society there is wide variation in local infection 
numbers and rates, so we made a more detailed “within country” 
analysis for the 10 US states which have exhibited a distinct or dis-
cernable early Peak 1 plus evidence of already reaching Peak 2 or 
some semi-plateau in daily rates after about 100+ days (and as of 

Table 1 | Country data with first peak and distinct second wave

Country/
region

Start  
d = 0, 2020 Peak 1 rate p (d0)day D (m2/day) L (m)

Australia 18 March 715 81 0.013 10
Canada 12 March 2760 53 0.012 7
France 5 March 4610 107 0.014 10
Italy 25 February 6560 100 0.014 12
UK 7 March 5290 120 0.014 9
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June 22, 2021, available state-by-state at https://coronavirus.jhu.edu 
“By Region”), As shown in Table 2, there is a wide range of ratios 

with an average of 
n
n

M

M

2

1

4 1= . , comparable to the above national 

average. These observations can be compared to the predicted  
Peak 1 to Peak 2 number ratio from the diffusion model  
[Equation (8)]. Using the above observed and fitted values of 
dM1 ~ 30 days, dM2 ~ 100 days, with (G–k) ~ 0.15 per day, gives 
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8 , for D ~ 0.01 m2/day, L ~ 10 m, a second Peak 2  

or semi-plateau of nearly an order of magnitude larger than the 
Peak 1 long preceding it. The uncertainty in this simple estimate 
depends on parameters which are location and policy specific, 
namely the balance, (G–k), between infection growth and societal 
countermeasure effectiveness.

Following these predictions and estimates, we examined the appar-
ently unique case of China3 as: (a) being the original source of 
the pandemic reaching Peak 1 in 26 days of 4000 cases per day by 
February 13, 2020; (b) exhibiting a rapid decline from Peak 1 which 
followed learning theory and presaged global recovery trends [9]; 
(c) thereafter reporting low daily infection rates (claimed to be 
mainly importations), with a barely discernable second wave Peak 2  
reported as 276 cases per day on July 31; and (d) maintaining 
almost complete control of population movement and mobility, 
with enforced NPI mandates and personal contact tracking. With 
low and fluctuating numbers, it is difficult to uniquely pinpoint the 
second wave onset day, dn02

, and rate value, n02, taken here as nom-
inally day d = 100 with just two reported cases per day, suggesting 
n02/n01 ~ 2/100 = 0.02, which would give nM2/nM1 ~ 0.16, compared 
to that reported or observed of 276/4000 ~ 0.07.

The comparison of the data to the fitted theory [Equation (5)] is 
shown in Figure 3 using the same D = 0.012 m2/day and L = 10 m  
values found for the Table 1 countries. This similarity suggests the 
fundamental physical diffusion and societal transmission processes 
are globally the same; and that China exhibits the same long-term 
embedding in the community as everywhere else. In addition since 
the Peak 1 initial recovery in China is similar to Italy and others 

[10], the second peak should be R
n
n

* ≈

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
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8 02

01
 ~ 8, close to that 

observed.

As further confirmation, currently, a wide range of second defined 
waves or plateaux after Peak 1 are on-going and have not yet 

3This case study was suggested by Professor Francesco D’Auria as being of particular 
importance in terms of the total population at risk.

Table 2 | US state data with first peak and distinct second wave

US state Peak 1 rate, nM1 Peak 2 rate, nM2 Ratio, R*

Alabama 346 2143 6.2
Arkansas 323 992 3.1
Colorado 526 1139 2.2
Florida 1269 13965 11
Georgia 1333 4813 3.6
Idaho 131 878 6.7
Kansas 345 1040 3
Louisiana 1857 3840 2.1
Nebraska 645 1286 2
Washington 584 959 1.6

Figure 2 | Second wave trends compared to theory.
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declined [22]. Current ratio examples include: Austria (8), Belgium 
(9), Canada (2), Denmark (4), France (11), Germany (4), Indonesia 
(4), Iran (4), Israel (5), Italy (6), Nepal (9), Spain (3), Sweden (3), 
and UK (6). These overall ratios cover a similar range (2–12) to 
the US internal/regional state ratios in Table 2, and encompass 

the predicted estimate, R
n
n

n
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8  , which surely is not a  
coincidence.

3.3. � Local and Regional Peak Ratio Trends 
and Predictions

Insignificant initial infections may occur locally outside the initial 
peak regions (e.g. large cities like New York or Wuhan) but increase 
only after about 100–150 days solely due to slow progressive inter-
nal diffusive spread throughout the region, notably seen for US 
states like Alabama, Alaska, Wisconsin and some European coun-
tries. Being important for local public health risk planning pur-
poses, we examined if an even small regional population internal to 
the country followed the same trends. Data were obtained directly 
from the state-run East Idaho Public Health District (EIPHD) cov-
ering Bonneville County, Idaho (where the author lives), with a 
local population only circa 120,000, a rural and urban setting with-
out a first local first peak despite Idaho overall having a Peak 1 from 
infections cases occurring in other locations (Figure 1). The second 
wave arrived and emerged after about 100 days after the first onset, 
a similar timeframe to the second wave onset for the whole state 
data in Figure 2.

Figure 4 compares the data to Equation (8), with the starting,  
d = 100 days after first exceeding 100 initial cases in the whole state 
(Figure 1). The “best” theory fit shown uses the same values for  
D (0.012 m2/day) and L (10 m) as for China and all the large coun-
tries in Table 1 and encompasses the data. This is a major and quite 
unexpected confirmation that the diffusion concept represents 
infection risk growth throughout whole and totally disparate soci-
eties with large differences in population and enforced or “man-
dated” countermeasures.

In passing, note that despite continued controls and countermea-
sures, New York State is currently exhibiting the symptoms of the 
onset of a second wave after day 150 (August 7, 2020), with cases 
slowly and inexorably rising. This is a pure prediction for a possible 
second wave of similar magnitude to Italy.4

For successive (third or more) waves arising in the ever-widening 
infected community, the assumption is each wave is superimposed 
on (or builds upon) any base or remnants of predecessor infections 
from the earlier wave(s). In USA and Japan, despite being totally 
distinct and distanced societies, distinct Peak 3 occurred after a 
further 100 days after Peak 2, so an initial scoping analysis was per-
formed using the identical L and D values derived for Peak 2 to 
predict the USA Peak 3 growth, as shown in Figure 5.

Although a simplified and pessimistic over-prediction, the overall 
trends are reclaimed, with the ratio, n
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with Table 2 n
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 values, implying again that diffusion represents 

the limiting or controlling processes for any and all additional 
waves independent of societal countermeasures.Figure 3 | Comparison of theory to second wave data in China.

Figure 4 | Internal second wave onset in local region of a USA state.

Figure 5 | Initial scoping third wave predictions for the entire USA (data 
for March 4 to November 10, 2020).

4Note added in March 2020: As predicted in October, such a second wave in fact occurred 
in Italy with Peak 2 in mid-November with rate magnitude ratio nM2/nM1 ~ 8. 
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4. � DISCUSSION: THE RISK AND  
UNCERTAINTY OF LARGE SUCCESSIVE 
WAVES AND VACCINE EFFECTIVENESS

We need to pro-actively plan, but as far we know there have been 
no other second wave size and timing predictions with diffusion 
adopted as the dominant limiting physics for community spread-
ing. Predicting second wave timing and magnitude is a difficult 
task with considerable uncertainty so we have tried to find a simple 
solution to this hard problem while not claiming complete accu-
racy. Despite significant variability and uncertainty, after a few  
100 days second waves (up to a factor of 10 larger than Peak 1) 
are to be expected, and this elevated risk should be pro-actively 
planned and managed.

Given diffusion represents the limiting societal transmission phe-
nomena, the present simple one-dimensional theory cannot rep-
licate every detail for more complex scenarios but can plausibly 
explain as follows:

(a)		 no discernable first peak appears because multiple numer-
ous initially rapid infections dominate initial national counts, 
followed by more widespread cases over the 100’s of days of 
slow diffusive timescale, notably as observed in Argentina and 
Brazil as well as in local regions.

(b)	 only a slow recovery occurred after the initial rapid Peak 1, so 
many thousands of cases were still occurring during the diffu-
sion masking the second wave onset which is then superim-
posed after about 150 days, as notably demonstrated by Russia 
and the USA.

While beyond the scope of the present paper, these detailed trends 
really require more complex intra-regional analysis. The limiting 
overall societal viral transmission mechanism being diffusion via 
widespread societal contamination and viral presence replaces the 
usual paradigm of traditional SEIR and C0 epidemiological models 
which assume the new infection rate is directly proportional to the 
number originally infected [e.g. 11–13,16].

Ascribing physical significance, the observed characteristic dif-
fusive length scale of approximately 10 m is an effective over-
all societal transmission distance not inconsistent with feasible 
transmission dimensions [21]; and not coincidentally is a typical 
room, home or store dimension where people and societies inter-
act. The order of magnitude for the coefficient, D, is a factor of 
more than 10,000 smaller than the 10−2 to 10−3 m2/s associated or 
expected for local airborne atmospheric particulate or direct aero-
sol spreading mechanisms [see, e.g. 23,24] reflecting the slow onset 
of second and other waves are simply the consequences of normal 
human and personal interactions and overall societal risk-taking  
behavior [25], as exemplified in the USA by the contrasting weak 
and strong policies adopted in Florida and California, respectively.

As to the important question of quantifying effectiveness of vac-
cines as a pharmaceutical intervention or countermeasure, in 
principle our learning model [9,10] allows direct estimation of the 
revised, k, value in Equation (7) describing the exponential decline 
from Peak 3, an exercise that is on-going. The new predictions and 
comparisons illuminate public health policy and risk planning. 
The present analysis quantitatively shows timing and learning and 

adopting effective countermeasures reduce magnitudes but cannot 
eliminate infections completely. Since pandemic second and more 
waves persist, the only perfect diffusion “barrier” or so-called  
“circuit breaker” is indefinite isolation for everyone everywhere, 
which is neither feasible nor desirable.

5. � CONCLUSION: BEING PRO-ACTIVE  
IN RISK PREDICTIONS

We have established the principal that the timing and magnitude  
of long-term infection increases or successive waves can be based 
on the well-known physics of classical diffusion theory. This simple 
concept explains and predicts the successive “waves” or recurrences 
of higher infection numbers 100’s of days after the first peak in case 
rates, with the subsequent inexorable dynamic community-wide 
spread and embedding of infections. If the pandemic started in 
localized centers, this diffusion process represents the inevitable 
but “imperfect” subsequent transmission of viral infections inde-
pendent of strain due to prevalent, pervasive and persistent soci-
etal behaviors, and is a physical model fundamentally different 
from the proportional rate assumptions of traditional SEIR and C0  
epidemiological models.

To enable original trend, size and timing predictions and obtain 
physical insight, we have derived explicit approximate equations 
for dynamic infection numbers using the simplest homogenous 
one-dimensional diffusion model. Two physically-based variables, 
a characteristic societal length scale and an effective community 
wide diffusion coefficient, have been fitted to the infection rate data 
for a wide range of countries and local regions of differing societal 
behaviors and countermeasures, showing that the effective diffu-
sivity and characteristic scale are universal. The timing and relative 
size of the second and subsequent larger peaks or semi-plateau is 
also limited by the relative (in)effectiveness of NPI countermea-
sures and societal learning effects. Medical system planning and 
emergency bed count capacity projections encompass peak wave 
magnitude ratios, R*, of up to about 10 times the initial peak infec-
tion rate after about 100 days. We know of no other estimation 
method or published number for the risk of second and subsequent 
peaks and for estimating uncertainties. The policy and risk plan-
ning implications of such inexorable diffusive spread must be by 
recognizing potentially larger infection waves will inevitably occur 
and pro-actively planning for that eventuality.
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NOMENCLATURE 

D – Effective community diffusion coefficient; 
d – Elapsed time in days; 
G – Initial characteristic infection rate; 
k – Learning countermeasure characteristic rate; 
L – Characteristic transmission societal scale; 
L*– Diffusive scale ratio, (4Dd/L2)1/2; 
NPI – Non-pharmaceutical intervention; 
n – Number of infections in any day; 
R* – Infection number ratio, R* = q (d)/q (d0); 
t –Time; 
q – Non-dimensional number ratio; [Equation (5)]. 
Subscripts 
M1 – Maximum value at Peak 1; 
M2 – Maximum or asymptotic value of second wave; 
m – Minimum achieved or attainable value; 
0 – Initial or beginning value; 
01 – Initial value for onset of Peak 1; 
02 –Initial value for onset of second wave. 
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